Computational Logic Exercises - SetTheory

Adolfo Villafiorita Fausto Giunchiglia

Exercise at Home

- Represent the "next move" relationship in Tic-Tac-Toe
- Start from the set of board positions

- What properties does it have? Why (or why not)?
 - Reflexive?
 - Symmetric?
 - Transitive?
 - Anti-symmetric?
 - Surjective?
 - Injective?
 - Can you find a partial order?
 - Can you find a partition?

nextMove

- Domain: sets of all board states (both "possible" and "impossible" states)
- Next move: binary relationship between two states (current board, next board)
- It is up to us to decide
 whether to define it only on
 "good" moves or not (however,
 we would then have the
 "issue" of proving its various
 properties, unless we partition
 the set)

NextMove: Reflexive?

reflexive iff
nextMove(a, a) for all
a ∈ D

- NextMove is not reflexive
- It would be only if we had a "pass" in the game

nextMove: Symmetric?

symmetric iff
 nextMove(a, b)
 implies nextMove(b,
 a) for all a, b ∈ D

- No
- A relationship
 "connected"
 representing both
 next and previous
 move could be.

nextMove: Transitive?

transitive iff
 nextMove(a, b) and
 nextMove(b, c) imply
 nextMove(a, c) for all
 a, b, c ∈ D

- No
- A "reachable"
 relationship is
 (reachable = can I
 reach this state from
 this other one?)

nextMove: Anti-symmetric?

- anti-symmetric iff nextMove(a, b) and nextMove(b, a) imply a = b for all a, b ∈ D
- No, since we don't
 have a and b such
 that (nextMove(a, b)
 and nextMove(b, a))
 is true

nextMove: function?

• No. | Xox | -0-

XOX

XOX

- Surjective and injective are properties of functions. We need to ask first whether nextMove is a function, then.
- A function f from A to B is a relation that associates to each element a in A exactly one element b in B. Denoted with f : A →B
- Intuitively: given a board state there are different possible moves and, therefore, different possible next states

Examples of Functions in D?

- F: D → {0..9}
 (numbers of square filled)
- Surjective, not injective

- G: D → {X_Wins, Draw, Y_Wins, Intermediate, Impossible}
- Surjective, not injective

Defining an Order

- We need to find a relation which is:
 - Reflexive
 - Anti-symmetric
 - Transitive

- a R b if the number of filled cells in a is less or equal to the number of filled cells in b
- (R measures how far we are in the game)

Partitions

 Let A be a set, a partition of A is a family F of non-empty subsets of A s.t.: the subsets are pairwise disjoint the union of all the subsets is the set A

Many, many, many:

- The subset of the legal boards and the set of the illegal boards are a partition of D
- In addition to previous: the legal boards are further divided in the set of final states and that of nonfinal states
- In addition to previous: the set of final states in which X-wins, those in which O-wins, those in which none wins and all non-final states
- The set of all boards with the first row empty and the set of boards with the first row non empty

• ...

Good luck! Questions:

https://github.com/avillafiorita/cl-2020

Adolfo Villafiorita Fausto Giunchiglia

