Mathematical Logic PL - Reasoning as deduction

Fausto Giunchiglia and Mattia Fumagalli*

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

Mathematical Logic PL - Reasoning as deduction

Fausto Giunchiglia and Mattia Fumagalli*

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

- I. Recap of basic notions
- 2. Reasoning as deduction
- 3. Hilbert systems (VAL forward chaining)
- 4. Tableaux systems ((un)-SAT backward chaining)

Tableaux

- Early work by Beth and Hintikka (around 1955). Later refined and popularised by Raymond Smullyan:
 - R.M. Smullyan. First-order Logic. Springer-Verlag, 1968.
- Modern expositions include:
 - M. Fitting. First-order Logic and Automated Theorem Proving. 2nd edition. Springer-Verlag, 1996.
 - M. DAgostino, D. Gabbay, R. H'ahnle, and J. Posegga (eds.). Handbook of Tableau Methods. Kluwer, 1999.
 - R. H'ahnle. Tableaux and Related Methods. In: A. Robinson and A. Voronkov (eds.), Handbook of Automated Reasoning, Elsevier Science and MIT Press, 2001.
 - Proceedings of the yearly Tableaux conference:

http://il2www.ira.uka.de/TABLEAUX/

The tableau method is a method for proving, in a mechanical manner, that a given set of formulas is not satisfiable. In particular, this allows us to perform automated *deduction*:

Given : set of premises Γ and conclusion φ

Task:prove $\Gamma \vDash \varphi$

How? show $\Gamma \cup \{\neg \varphi\}$ is not satisfiable (which is equivalent), i.e. add the complement of the conclusion to the premises and derive a contradiction (refutation procedure)

See refutation theorem

An example

- **Data structure**: a proof/ deduction is represented as a tableau i.e., a binary tree the nodes of which are labelled with formulas.
- **Start**: we start by putting the premises and the negated conclusion into the root of an otherwise empty tableau.
- **Expansion**: we apply expansion rules to the formulas on the tree, thereby adding new formulas and splitting branches. Compare with Hilbert calculus (forward vs backward chaining, axioms+theorems vs goal)
- **Closure**: we close branches that are obviously contradictory. **Success**: a proof is successful iff we can close all branches.

Expansion Rules of Propositional Tableau

	α rules	\neg \neg -Elimination			
$\varphi \wedge \psi$	$\neg (\varphi \lor \psi)$	$\neg \left(\varphi \supset \psi ight)$	רר $arphi$		
φ	$\neg \varphi$	arphi	φ		
ψ	$\neg \psi$	$\neg \psi$			
	β rules	Branch Closure			
$\begin{array}{c c} \varphi \lor \psi \\ \hline \varphi & \psi \end{array}$	$ \begin{array}{c c} \neg \left(\varphi \wedge \psi \right) \\ \hline \neg \varphi & \neg \psi \\ \end{array} $	$\begin{array}{c c} \varphi \supset \psi \\ \hline \neg \varphi & \psi \end{array}$			

Note: These are the standard ("Smullyan-style") tableau rules.

We omit the rules for \equiv . We rewrite $\varphi \equiv \psi$ as $(\varphi \supset \psi) \land (\psi \supset \varphi)$

Two types of formulas: conjunctive (α) and disjunctive (β):

α	αι	α2	в	Bı	в2
$\varphi \wedge \psi$	· ·	•	$\varphi \lor \psi$	· ·	•
$\neg \left(\varphi \lor \psi \right)$			$\neg (\varphi \land \psi)$		
$\neg (\varphi \supset \psi)$	φ	$\neg \psi$	$\varphi \supset \psi$	¬φ	ψ

We can now state α and β rules as follows:

Note: α rules are also called deterministic rules. β rules are also called splitting rules.

Some definitions for tableaux

Definition (type-alpha and type-6 formulae)

- Formulae of the form $\varphi \land \psi$, $\neg (\varphi \lor \psi)$, and $\neg (\varphi \supset \psi)$ are called type- α formulae.
- Formulae of the form $\varphi \lor \psi$, $\neg (\varphi \land \psi)$, and $\varphi \supset \psi$ are called type- β formulae

Note: type-*alpha* formulae are the ones where we use α rules. type- β formulae are the ones where we use β rules.

Definition (Closed branch)

A closed branch is a branch which contains a formula and its negation.

Definition (Open branch)

An open branch is a branch which is not closed

Definition (Closed tableaux)

A tableaux is closed if all its branches are closed.

Definition (Derivation $\Gamma \vdash \varphi$ **)**

Let φ and Γ be a propositional formula and a finite set of propositional formulae, respectively. We write $\Gamma \vdash \varphi$ to say that there exists a closed tableau for $\Gamma \cup \{\neg \varphi\}$

- A tableau for r attempts to build a propositional interpretation for r. If the tableaux is closed, it means that no model exist.
- We can use tableaux to check if a formula is satisfiable.

Exercise

Check whether the formula \neg (($P \supset Q$) \land ($P \land Q \supset R$) \supset ($P \supset R$)) is satisfiable

Solution

The tableau is closed and the formula is not satisfiable.

For each open branch in the tableau, and for each propositional atom p in the formula we define

$$I(p) = \begin{cases} \text{True} & \text{if } p \text{ belongs to the branch,} \\ \text{False} & \text{if } \neg p \text{ belongs to the branch.} \end{cases}$$

If neither p nor $\neg p$ belong to the branch we can define I(p) in an arbitrary way.

Models for \neg ($P \lor Q \supset P \land Q$)

Two models:

- I(P) = True, I(Q) = False
- I(P) = False, I(Q) = True

Double-check with the truth tables!

Double-check with the truth tables!

Assuming we analyze each formula at most once, we have:

Theorem (Termination)

For any propositional tableau, after a finite number of steps no more expansion rules will be applicable.

Hint for proof: This must be so, because each rule results in ever shorter formulas.

Note: Importantly, termination will *not* hold in the first-order case.

To actually believe that the tableau method is a valid decision procedure we have to prove:

Theorem (Soundness)

If $\Gamma \vdash \varphi$ then $\Gamma \models \varphi$

Theorem (Completeness)

If $\Gamma \vDash \varphi$ then $\Gamma \vdash \varphi$

Remember: We write $\Gamma \vdash \varphi$ to say that there exists a closed tableau for $\Gamma \cup \{\neg \varphi\}$.

Hint: tableau builds a branch for any possible truth assignment, and vice versa, compare with truth tables

Definition (Fairness)

We call a propositional tableau fair if every non-literal of a branch gets eventually analysed on this branch.

The proof of Soundness and Completeness confirms the decidability of propositional logic:

Theorem (Decidability)

The tableau method is a decision procedure for classical propositional logic.

Proof. To check validity of φ , develop a tableau for $\neg \varphi$. Because of termination, we will eventually get a tableau that is either (1) closed or (2) that has a branch that cannot be closed.

- In case (1), the formula φ must be valid (soundness).
- In case (2), the branch that cannot be closed shows that $\neg \varphi$ is satisfiable (see completeness proof), i.e. φ cannot be valid.

This terminates the proof.

Exercise

Build a tableau for $\{(a \lor b) \land c, \neg b \lor \neg c, \neg a\}$

Another solution

What happens if we first expand the disjunction and then the conjunction?

Expanding β rules creates new branches. Then α rules may need to be expanded in all of them.

- Using the "wrong" policy (e.g., expanding disjunctions first) leads to an increase of size of the tableau, which leads to an increase of *time*;
- yet, unsatisfiability is still proved if set is unsatisfiable;
- this is not the case for other logics, where applying the wrong policy may inhibit proving unsatisfiability of some unsatisfiable sets.

- It is an open problem to find an efficient algorithm to decide in all cases which rule to use next in order to derive the shortest possible proof.
- However, as a rough guideline always apply any applicable *non-branching rules* first. In some cases, these may turn out to be redundant, but they will never cause an exponential blow-up of the proof.

- Are analytic tableaus an efficient method of checking whether a formula is a tautology?
- Remember: using the truth-tables to check a formula involving n propositional atoms requires filling in 2ⁿ rows (exponential = very bad).
- Are tableaux any better?
- In the worst case no, but if we are lucky we may skip some of the 2ⁿ rows !!!

Mathematical Logic Reasoning as deduction

Fausto Giunchiglia and Mattia Fumagalli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli