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Tableaux

Early work by Beth and Hintikka (around 1955). Later refined  and 
popularised by Raymond Smullyan:

R.M. Smullyan.  First-order Logic.  Springer-Verlag, 1968.

Modern expositions include:

M. Fitting. First-order Logic and Automated Theorem  Proving. 2nd 

edition.  Springer-Verlag, 1996.

M. DAgostino, D. Gabbay, R. H ähnle, and J. Posegga (eds.).  Handbook of 

Tableau Methods. Kluwer, 1999.

R. H ähnle.  Tableaux and Related Methods.  In:  A. Robinson

and A. Voronkov (eds.), Handbook of Automated Reasoning,  Elsevier Science 

and MIT Press, 2001.

Proceedings of the yearly Tableaux conference:

http://i12www.ira.uka.de/TABLEAUX/
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How does it work?

The tableau method is a method for proving, in a mechanical  

manner, that a given set of formulas is not satisfiable. In  particular, 

this allows us to perform automated deduction:

Given :    set of premises Γ and conclusion φ

Task :prove Γ ⊨φ

How? show Γ ∪{¬φ} is not satisfiable (which is equivalent),

i.e. add the complement of the conclusion to the premises  and derive a 

contradiction (refutation procedure)

See refutation theorem
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¬ (q ∨p ⊃ p ∨q)

(q ∨p)

¬ (p ∨q)

¬ p

¬ q

p

X

q

X

Tree

Binary

Closed

An example
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Constructing Tableau Proofs

Data structure: a proof/ deduction is represented as a tableau - i.e., a  

binary tree - the nodes of which are labelled with   formulas.

Start: we start by putting the premises and the negated  conclusion into the 

root of an otherwise empty tableau.

Expansion: we apply expansion rules to the formulas on the  tree, thereby 

adding new formulas and splitting branches. Compare with Hilbert calculus

(forward vs backward chaining, axioms+theorems vs goal)

Closure:  we close branches that are obviously contradictory.

Success:  a proof is successful iff we  can close all branches.
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Expansion  Rules  of Propositional Tableau

φ∧ψ

α rules

¬ (φ∨ψ) ¬ (φ⊃ψ)

¬ ¬ -Elimination

¬ ¬ φ

φ ¬ φ φ φ
ψ ¬ ψ ¬ ψ

β rules Branch Closure

φ∨ψ ¬ (φ∧ψ) φ ⊃ψ

φ ψ ¬ φ ¬ ψ ¬ φ ψ

φ
¬ φ

X

Note: These are the standard (“Smullyan-style”) tableau rules.

We omit the rules for ≡.  We rewrite φ≡ ψ as  (φ ⊃ ψ) ∧ (ψ ⊃ φ)
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Smullyans Uniform Notation

Two types of formulas:  conjunctive (α) and disjunctive (β):

α α1 α2 β β1 β2

φ∧ψ φ ψ φ∨ψ φ ψ

¬ (φ∨ψ) ¬ φ ¬ ψ ¬ (φ∧ψ) ¬ φ ¬ ψ
¬ (φ⊃ψ) φ ¬ ψ φ⊃ψ ¬ φ ψ

We can now state α and β rules as  follows:

α β

α1 β1 β2

α2

Note: α rules are also called deterministic rules. β rules are also called 

splitting rules.
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An example

¬ (q ∨p ⊃ p ∨q)

(q ∨p)

¬ (p ∨ q)

¬ p

¬ q

p q

X X
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Some definitions for tableaux

Some  definition for tableauxDefinition (type-alpha and  type-β formulae)

Formulae of the form φ∧ ψ, ¬ (φ ∨ψ), and ¬ (φ ⊃ ψ) are called type-α formulae.  

Formulae of the form φ∨ψ, ¬ (φ ∧ ψ), and φ⊃ ψ are  called type-β formulae

Note:  type-alpha formulae are  the ones  where we  use  α rules.  type-β formulae are  the ones  where we  use  β rules.

Definition (Closed branch)

A closed branch is a  branch which contains a  formula and its negation.

Definition (Open branch)

An open branch is a  branch which is not closed

Definition (Closed tableaux)

A tableaux is closed if all its branches are closed.

Definition (Derivation Γ ⊢ φ)

Let φand Γ be a propositional formula and a finite set of propositional formulae,  

respectively.  We write Γ ⊢ φ to say  that there exists a  closed tableau for Γ ∪ {¬ φ}
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Tableaux and satisfiability

Exercise

A tableau for Γ attempts to build a propositional interpretation  for 

Γ. If the tableaux is closed, it means that no model  exist.

We can use tableaux to check if a formula is satisfiable.

Check whether the formula ¬ ((P ⊃ Q) ∧ (P ∧ Q ⊃ R) ⊃ (P ⊃R))

is satisfiable
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Solution

¬ ((P ⊃ Q) ∧ (P ∧ Q ⊃ R) ⊃ (P ⊃ R))

(P ⊃ Q) ∧ (P ∧ Q ⊃ R)

¬ (P ⊃ R)

P ⊃ Q

P ∧ Q ⊃ R

P

¬ R

¬ P

X

Q

¬ (P ∧ Q)

¬ P

X

¬ Q

X

R

X

The tableau is closed and the formula is not satisfiable.
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Using  the tableau to build interpretations.

For each open branch in the tableau, and for each propositional atom p in the 

formula we define

I(p) =
True if p belongs to the branch,

False if ¬ p  belongs to the branch.

If neither p nor ¬ p belong to the branch we can define I(p) in an arbitrary

way.
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¬ (P ∨Q ⊃ P ∧ Q)

P ∨Q

¬ (P ∧ Q)

P

¬ P

X O

Q

¬ Q ¬ P

O

¬ Q

X

Two models:

I ( P ) = True, I ( Q ) = False

I ( P ) = False, I ( Q ) = True

Models for ¬ (P ∨ Q ⊃ P ∧ Q)
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Double-check with the truth tables!

P

T

Q

T

P ∨ Q

T

P ∧ Q

T

P ∨ Q ⊃ P ∧ Q

T

¬ (P ∨ Q ⊃ P ∧ Q)

F

F F F F T F

T F T F F T

F T T F F T
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Double-check with the truth tables!

P

T

Q

T

P ∨ Q

T

P ∧ Q

T

P ∨ Q ⊃ P ∧ Q

T

¬ (P ∨ Q ⊃ P ∧ Q)

F

F F F F T F

T F T F F T

F T T F F T
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Termination

Assuming we  analyze each formula at most once, we  have:

Note: Importantly, termination will not hold in the first-order case.

Theorem (Termination)

For any propositional tableau, after a finite number of steps no more expansion 

rules will be applicable.

Hint for proof: This must be so, because each rule results in ever  shorter

formulas.
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Soundness  and Completeness

To actually believe that the tableau method is a valid decision procedure 

we have to prove:

Theorem (Soundness)

If Γ ⊢ φ then Γ ⊨ φ

Theorem (Completeness)

If Γ ⊨ φ then Γ ⊢ φ

Remember: We write Γ ⊢ φ to say that there exists a closed  tableau for 

Γ ∪{¬ φ}.

Hint: tableau builds a branch for any possible truth assignment, and vice 

versa, compare with truth tables
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A last definition - Fairness

Definition (Fairness)

We call a propositional tableau fair if every non-literal of a branch  gets 

eventually analysed on this branch.
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Decidability

The proof of Soundness and Completeness confirms the  

decidability of propositional logic:

Theorem (Decidability)

The tableau method is a decision procedure for classical  propositional

logic.

Proof. To check validity of φ, develop a tableau for ¬ φ. Because  of 

termination, we will eventually get a tableau that is either (1)  closed or 

(2) that has a branch that cannot be  closed.

In case (1), the formula φ must be valid (soundness).

In case (2), the branch that cannot be closed shows that ¬ φ
is satisfiable (see completeness proof), i.e.  φ cannot be valid.

This terminates the proof.
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Exercise

Exercise

Build a tableau for {(a ∨b) ∧ c, ¬ b ∨¬ c, ¬ a}

(a ∨b) ∧ c

¬ b ∨¬ c
¬ a

a ∨b
c

¬ b

a

X

b

X

¬ c

a

X

b

X
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Another solution

What happens if we first expand the disjunction and then the  

conjunction?

(a ∨b)∧ c

¬ b ∨¬ c

¬ a

¬ b

a ∨ b  

c

a b

¬ c

a ∨ b  

c

a b

X X X X

Expanding β rules creates new branches. Then α rules may need  to be 

expanded in all of them.
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Strategies of expansion

Using the “wrong” policy (e.g., expanding disjunctions first) leads

to an increase of size of the tableau, which leads to an increase of

time;

yet, unsatisfiability is still proved if set is unsatisfiable;

this is not the case for other logics, where applying the wrong policy

may inhibit proving unsatisfiability of some unsatisfiable sets.
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Finding Short Proofs

It is an open problem to find an efficient algorithm to decide  in all 

cases which rule to use next in order to derive the  shortest possible

proof.

However, as a rough guideline always apply any applicable  non-

branching rules first. In some cases, these may turn out  to be 

redundant, but they will never cause an exponential  blow-up of the

proof.
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Efficiency

Are analytic tableaus an efficient method of checking whether  a 

formula is a tautology?

Remember: using the truth-tables to check a formula  involving n 

propositional atoms requires filling in 2n rows (exponential = very

bad).

Are tableaux any better?

In the worst case no, but if we are lucky we may skip some of  the 

2n  rows !!!
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