Mathematical Logic PL - Reasoning as deduction

Fausto Giunchiglia and Mattia Fumagalli*

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

Lecture index

- I. Recap of basic notions
- 2. Reasoning as deduction
- 3. Hilbert systems (VAL forward chaining)
- 4. Tableaux systems ((un)-SAT backward chaining)

Reasoning / Decision problems

Four tipes of questions

- Not via deduction
- Model Checking MC (I, φ) : $I \models \varphi$. What is the truth value of φ in I, or equivalently, does I satisfy φ or does it not satisfy φ .
- (Un)Satisfiability SAT/ UNSAT (φ): $\exists l : l \models \varphi$ Is there a model I that satisfies φ ?
- Validity VAL(φ): φ . Is φ satisfied by all the models 1?
- Logical consequence (Γ, φ) : $\Gamma \models \varphi$ Is φ satisfied by all the models I that satisfy all the formulas in Γ ?

2

Reminder

Proposition

A Valid \rightarrow A satisfiable \longleftrightarrow A not unsatisfiable

A unsatisfiable \longleftrightarrow A not satisfiable \to A not Valid

 Γ , $A \models B \longleftrightarrow \Gamma \models A \to B$

 $\Gamma \vDash \phi \longleftrightarrow \Gamma \cup \{\neg \phi\}$ not satisfiable

Proposition

if A is	then ¬A is
Valid	Unsatisfiable
Satisfiable	not Valid
not Valid	Satisfiable
Unsatisfiable	Valid

1

Lecture index

- I. Recap of basic notions
- 2. Reasoning as deduction
- 3. Hilbert systems (VAL forward chaining)
- 4. Tableaux systems ((un)-SAT backward chaining)

Deduction / Proof

Given

- Premises: Γ
- 2. Conclusion: A

A deduction /proof is Sequence, Tree/ Direct Acyclic Graph (DAG) of nodes, where

- · Each node of the deduction labeled with a formula
- · Links labeled with motivation (so called «inference rules»)
- Root nodes are premises
- · Leaf node(s) is conclusion

We write $\Gamma \models A$ – to mean that there is (at least a) deduction which «connects» Γ and A.

Key properties that we want satisfied: Correctness theorem (\Rightarrow) and Completeness theorem (\Leftarrow) , in formulas:

$$\Gamma \models \varphi \text{ iff } \Gamma \models \varphi$$

NOTE: computation of other logical properties listed in Recap follows.

Deductions (examples)

Examples of deductions (as defined by different logics)

- I. Example I: Sequence
- 2. Example 2: Forward Tree/ Direct Acyclic Graph (DAG)
- 3. Example 3: Backward Tree/ DAG

Inference rules (examples)

Rules of Inference

Modus Ponens

$$\frac{p}{p \to q}$$

Modus Tollens

$$\frac{\neg q}{p \rightarrow q}$$

Hypothetical Syllogism

$$p \rightarrow q$$
 $q \rightarrow r$
 $p \rightarrow r$

Addition

$$\frac{p}{p \vee q}$$

Resolution

$$\frac{p \vee q}{\neg p \vee r}$$

$$\frac{q \vee r}{q \vee r}$$

Disjunctive Syllogism

$$\frac{p \vee q}{q}$$

Simplification

Conjunction

7

Types of Deductions

Two types of deductions (as defined by different logics)

- 1. Forward deductions (generate theorems from theorems)
- 2. Backward deducions (generate subgoals from goals)

Forward deductions (as defined by logics with forward calculus):

- Good for proving properties of logics
- Bad for deriving consequences (reasoning) of what is known
- Used in mathematical logics

Backward deductions (as defined by logics with forward calculus):

- Good for reasoning
- A little harder for proving properties of logics
- Used in Computer Science/ Artificial Intelligence

Forward Deduction (examples)

- Premises: what is known or assumed (axioms or assumptions)
- Conclusions: what we want to discover (theorems/ goals)
- Shape: (Forward path) or Forward Tree/ DAG
- Problem: how do you know where to go? Search motivated by goal.

Backward Deduction (examples)

- Premises: the goal to be proved
- Conclusions: some termination condition which guarantees that the goal derives from what is known (i.e., it is a <u>theorem</u>)
- Shape: Backward DAG
- Problem: In which direction to expand the proof, given exponential blow up (need very complex heuristics)

(example 3)

Mathematical Logic PL - Reasoning as deduction

Fausto Giunchiglia and Mattia Fumagalli*

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli