# Mathematical Logics Propositional Logic \*

### Fausto Giunchiglia and Mattia Fumagallli

University of Trento

### Reference(s):

 Francesco Berto, Logica da zero a Gödel, Laterza, 2018 (capitolo 1)



\*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

- I. Intuition
- 2. Language
- 3. Satisfiability
- 4. Validity and unsatisfiability
- 5. Logical conseguence and equivalence
- 6. Axioms and theories

### Definition (Propositional theory)

A theory is a set of formulas closed under the logical consequence relation. I.e. T is a theory iff  $T \models A$  implies that  $A \in T$ 

### Example (Of theory)

- $T_1$  is the set of valid formulas {A|A is valid}
- $T_2$  is the set of formulas which are true in the interpretation I = {P, Q, R}
- T<sub>3</sub> is the set of formulas which are true in the set of interpretations {I<sub>1</sub>, I<sub>2</sub>, I<sub>3</sub>}
- $T_4$  is the set of all formulas

Show that  $T_1$ ,  $T_2$ ,  $T_3$  and  $T_4$  are theories

### Example (Of non theory)

- $N_1$  is the set {A, A  $\rightarrow$  B, C}
- $N_2$  is the set  $\{A, A \rightarrow B, B, C\}$
- N<sub>3</sub> is the set of all formulas containing P

Show that  $N_1$ ,  $N_2$  and  $N_3$  are not theories

### Remark

A propositional theory always contains an infinite set of formulas. Indeed any theory T contains at least all the valid formulas. which are infinite) (e.g.,  $A \rightarrow A$  for all formulas A)

### Definition (Set of axioms for a theory)

A set of formulas  $\Omega$  is a set of axioms for a theory T if for all  $A \in T$ ,  $\Omega \models A$ .

### Definition (Finitely axiomatizable theory)

A theory T is finitely axiomatizable if it has a finite set of axioms.

Definition (Logical closure)

For any set  $\Gamma$ ,  $d(\Gamma) = \{A | \Gamma \models A\}$ 

### Proposition (Logical closure)

For any set  $\Gamma$ , the logical dosure of  $\Gamma$ , cl ( $\Gamma$ ) is a theory

### Proposition

 $\Gamma$  is a set of axioms for  $d(\Gamma)$ . (NOTE: not the only one)

# Example: Hilbert axioms for propositional logic

AI
$$\varphi \supset (\psi \supset \varphi)$$
A2 $(\varphi \supset (\psi \supset \vartheta)) \supset ((\varphi \supset \psi) \supset (\varphi \supset \vartheta))$ A3 $(\neg \psi \supset \neg \varphi) \supset ((\neg \psi \supset \varphi) \supset \varphi)$ 

## NOTE:

- 1. Minimal language (extra logical connectives defined in terms of the basic ones)
- 2. It allows to compute all tautologies
- 3. Useful to prove properties of logical theories (e.g., correctness and completeness of mathematics)
- 4. Never used in practice in CS (full use of connectives and more)
- 5. In practice in CS, people add more axioms (facts) which define what is true in the intended (mental) model

# Using logics in Practice – Reminder from lecture

## Define a logic

- □ most often by reseachers (almost never in real world applications)
- Done once for all (very hard. Examples. PL, FOL, DL, ML, ...)

## $\square$ Choose the right logic for the problem (L, I, $\vDash$ )

Given a problem the computer scientist must choose the right logic, most often one of the many available

## Write the theory

 The computer scientist writes a theory T (making sure it complies to intended mental model)

### □ Different uses (see above)

- Use theory as basis for agreement developer/customer
- Use theory to guarantee semantic interoperability (e.g., as in data integration, program composition, ...)
- Use reasoning (entailment) to make sure program does what it is supposed to do
- Use reasoning to implement AI

.. ב

### Compact representation of knowledge

The axiomatization of a theory is a compact way to represent a set of interpretations, and thus to represent a set of possible (acceptable) world states. In other words is a way to represent all the knowledge we have of the real world.

### Minimality

The axioms of a theory constitute the basic knowledge, and all the *knowledge* can be obtained by logical consequence.

An important feature of a set of axioms, is that they are minimal, i.e., no axioms can be derived from the others.

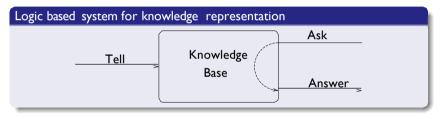
#### Example

 $\begin{array}{l} Pam\_Attends\_Logic\_Course\\ John\_is\_a\_Phd Student\\ Pam\_Attends\_Logic\_Course \rightarrow Pam\_is\_a\_Ms\_Student \lor Pam\_is\_a\_PhD\_Student\\ Pam\_is\_a\_Ms\_Student \rightarrow \neg Pam\_is\_a\_Ba\_Student\\ Pam\_is\_a\_PhD\_Student \rightarrow \neg Pam\_is\_a\_Ba\_Student\\ \neg (John\_is\_a\_Phd\_Student \land John\_is\_a\_Ba\_Student)\\ \end{array}$ 

The axioms above constitute the basic knowledge about the people that attend logic course. The facts  $\neg Pam\_is\_a\_Ba\_Student$  and  $\neg John\_is\_a\_Ba\_Student$  don't need to be added to this basic knowledge, as they can be derived via logical consequence.

## Logic based systems

A logic-based system for representing and reasoning about knowledge is composed by a Knowledge base and a Reasoning system. A knowledge base consists of a finite collection of formulas in a logical language. The main task of the knowledge base is to answer queries which are submitted to it by means of a Reasoning system



Tell: this action incorporates the new knowledge encoded in an axiom (formula). This allows to build a KB.

Ask: allows to query what is known, i.e., whether a formula  $\phi$  is a logical consequences of the axioms contained in the KB (KB  $\models \phi$ )

# Mathematical Logics Propositional Logic \*

### Fausto Giunchiglia and Mattia Fumagallli

University of Trento

### Reference(s):

 Francesco Berto, Logica da zero a Gödel, Laterza, 2018 (capitolo 1)



\*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli