Mathematical Logics Propositional Logic *

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

Reference(s):

 Francesco Berto, Logica da zero a Gödel, Laterza, 2018 (capitolo 1)

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

- I. Intuition
- 2. Language
- 3. Satisfiability
- 4. Validity and unsatisfiability
- 5. Logical conseguence and equivalence
- 6. Axioms and theories

Definition (Logical consequence)

A formula A is a logical consequence of a set of formulas $\boldsymbol{\Gamma},$ in symbols

Γ⊨A

Iff for any interpretation I that satisfies all the formulas in Γ , I satisfies A

Example (Logical consequence)

- p⊨p∨q
- q∨p⊨p∨q
- $p \lor q$, $p \rightarrow r$, $q \rightarrow r \models r$
- $p \rightarrow q$, $p \models q$
- *p* , ¬*p* ⊨ q

Proving Logical consequence using the truth tables

Use the truth tables method to determine whether $p \land \neg q \rightarrow p \land q$ is a logical consequence of $\neg p$.

р	q	$\neg p$	$p \land \neg q$	$p \wedge q$	$p \land \neg q \rightarrow p \land q$
T T F	T F T F	F F T T	F T F	T F F	T F F T

Definition (Logical equivalence)

Two formulas *F* and *G* are logically equivalent (denoted with $F \equiv G$) if for each interpretation *I*,

I(F)=I(G).

Use the truth tables method to determine whether $p \to (q \land \neg q)$ and $\neg p$ are logically equivalent.

$$p$$
 q $q \land \neg q$ $p \rightarrow (q \land \neg q)$ $\neg p$ TTFFFTFFFFFTFTTFFFTTFFFTT

Proposition

If Γ and Σ are two sets of propositional formulas and A and B two formulas, then the following properties hold: Reflexivity $\{A\} \models A$ Monotonicity If $\Gamma \models A$ then $\Gamma \cup \Sigma \models A$ Cut If $\Gamma \models A$ and $\Sigma \cup \{A\} \models B$ then $\Gamma \cup \Sigma \models B$ Compactness If $\Gamma \models A$, then there is a finite subset $\Gamma_0 \subseteq \Gamma$, such that $\Gamma_0 \models A$ Deduction theorem If Γ , $A \models B$ then $\Gamma \models A \rightarrow B$ Refutation principle $\Gamma \models A$ iff $\Gamma \cup \{\neg A\}$ is unsatisfiable

NOTE: vice versa of deduction theorem trivial

Mathematical Logics Propositional Logic *

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

Reference(s):

 Francesco Berto, Logica da zero a Gödel, Laterza, 2018 (capitolo 1)

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli