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Properties of propositional logical consequence

Proposition

If Γ and Σ are two sets of propositional formulas and A and B two formulas, then 

the following properties hold:

Reflexivity {A }  ⊨A

Monotonicity If Γ ⊨A then Γ ∪ Σ ⊨ A

Cut If Γ ⊨A and  Σ ∪ {A }⊨B then Γ∪ Σ ⊨ B

Compactness If Γ ⊨A, then there is a finite subset Γ0 ⊆ Γ, such  that Γ0 ⊨ A

Deduction theorem  If Γ, A ⊨B  then Γ ⊨A → B

Refutation principle  Γ ⊨A  iff Γ∪ {¬A} is unsatisfiable
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NOTE: vice versa of deduction theorem trivial



Reflexivity {A}  ⊨A.

PROOF: For all I  if I ⊨A, then I ⊨A.

Monotonicity If Γ ⊨A then Γ∪Σ⊨A

PROOF: For all I ,  if I ⊨Γ∪Σ, then I ⊨Γ. Then by  hypothesis (Γ ⊨A) 

we can infer that I ⊨A, and  therefore that Γ∪Σ⊨A
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Cut If Γ ⊨A and Σ∪ {A}⊨B then Γ∪Σ⊨B.  

PROOF: 

(i) In the premise of the conclusion of the theorem, for the definition of 

consequence relation, we have that, for all I, if I⊨ Γ ∪ Σ, then I⊨ Γ and  I⊨ Σ. 

(ii) The first theorem hypothesis Γ ⊨A implies that if I⊨ Γ then I⊨A, namely, 

from (i), I⊨A.  

(iii) Since from (i) we have that I⊨ Σ, then from (ii) I⊨ Σ ∪ {A}. 

(iv) The second theorem hypothesis Σ∪ {A} ⊨ B, implies that I⊨ B. 

(v)We can therefore  conclude, from (iii) and (iv), that Γ ∪ Σ ⊨B.
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Compactness If Γ⊨A, then there is a finite subset Γ0 ⊆ Γ, such  that

Γ0 ⊨A.

(REMEMBER: (o) A formula A is a logical consequence of a set of formulas Γ, in  

symbols Γ⊨A iff any interpretation I that satisfies all the formulas in Γsatisfies also A)

PROOF: 

(i) Trivial if Γ is finite. Trivial if A is a tautology. Assume A and therefore Γ satisfiable. Let

us consider infinite case with A not a tautology.

(ii) Let PA be the set of primitive propositions occurring in A (PA finite, being A one 

formula). 

(iii) Let I1, . . . , In (with n ≤ 2|PA| , n finite), be all the interpretations Ii of PA that do not 

satisfy A, namely Ii⊭A .  They must exist as A is not a tautology.

(iv) From Γ⊨A  then there  should be I'1 , . . . , I'n interpretations of the language of Γ, 
which are extensions of I1, . . . , In , and such that I' ⊭ Γk for some Γk ∈ Γ (from (iii) and 

(o): if conclusion of implication does not hold then the premise does not hold).

(v) Let Γ0 = {Γ1, . . . , Γk }. Then Γ0⊨A  (vacuously true since premise is false). 

(vi) Indeed if I⊨ Γ0 then I is an  extension of an interpretation J of PA that satisfies A, and 

therefore  I ⊨A.
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Deduction theorem  If Γ, A ⊨B thenΓ ⊨A → B 

PROOF:

(1) Assume by hypothesis that I ⊨Γ.  We have two cases:

(1.1) If  I ⊨A, then I ⊨B from hypothesis and therefore I ⊨A →B.  

(see inductive definition of implication satisfiability, i.e., I ⊨A→B  when  I ⊨A then I ⊨B)

(1.2) If  I  ⊭ A, then (false) ⊨B from hypothesis (since from (I) I ⊨Γ), and therefore 

I ⊨A →B (in the hypothesis, if for every I the premise is false the implication is always true) 

(2) We can therefore conclude  that I ⊨A →B.
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Refutation principle Γ ⊨A iff Γ ∪{¬ A} is unsatisfiable

PROOF:

(⇒) 
(i) Suppose by contradiction that Γ∪ {¬ A} is satisfiable.  

(ii) This implies that there is an interpretation I such that I ⊨ Γ and

I ⊨ ¬ A, i.e., I ⊭A. 

(iii) This contradicts that fact (stated in the hypothesis) that all 

interpretations that satisfy Γ also satisfy  A

(⇐) 
(i) Let I ⊨ Γ.

(ii) Then by the fact that Γ∪ {¬ A} is unsatisfiable, we have that I ⊭ ¬ A, 

(iii) Therefore I ⊨A.  

(iv) We can conclude that Γ ⊨A (iff for all I,  both I ⊨ Γand I ⊨ A, then Γ⊨A )
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