Mathematical Logics Propositional Logic (Properties and proofs) [Optional]

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

The content of these slides is optional – not tested by the exam

Lecture index

- I. Intuition
- 2. Language
- 3. Satisfiability
- 4. Validity and unsatisfiability
- 5. Logical conseguence and equivalence
 - I. Properties and proofs
- 6. Axioms and theories

Proposition

If Γ and Σ are two sets of propositional formulas and A and B two formulas, then the following properties hold:

Reflexivity $\{A\} \models A$

Monotonicity If $\Gamma \models A$ then $\Gamma \cup \Sigma \models A$

Cut If $\Gamma \models A$ and $\Sigma \cup \{A\} \models B$ then $\Gamma \cup \Sigma \models B$

Compactness If $\Gamma \models A$, then there is a finite subset $\Gamma_0 \subseteq \Gamma$, such that $\Gamma_0 \models A$

Deduction theorem If Γ , $A \models B$ then $\Gamma \models A \rightarrow B$

Refutation principle $\Gamma \models A$ iff $\Gamma \cup \{\neg A\}$ is unsatisfiable

NOTE: vice versa of deduction theorem trivial

2

Reflexivity $\{A\} \models A$.

PROOF: For all I if $I \models A$, then $I \models A$.

Monotonicity If $\Gamma \models A$ then $\Gamma \cup \Sigma \models A$

PROOF: For all I, if $I \models \Gamma \cup \Sigma$, then $I \models \Gamma$. Then by hypothesis ($\Gamma \models A$) we can infer that $I \models A$, and therefore that $\Gamma \cup \Sigma \models A$

3

Cut If $\Gamma \models A$ and $\Sigma \cup \{A\} \models B$ then $\Gamma \cup \Sigma \models B$.

PROOF:

- (i) In the premise of the conclusion of the theorem, for the definition of consequence relation, we have that, for all I, if $\Vdash \Gamma \cup \Sigma$, then $\Vdash \Gamma$ and $\Vdash \Sigma$.
- (ii) The first theorem hypothesis $\Gamma \vDash A$ implies that if $I \vDash \Gamma$ then $I \vDash A$, namely, from (i), $I \vDash A$.
- (iii) Since from (i) we have that $I \models \Sigma$, then from (ii) $I \models \Sigma \cup \{A\}$.
- (iv) The second theorem hypothesis $\Sigma \cup \{A\} \models B$, implies that $I \models B$.
- (v)We can therefore conclude, from (iii) and (iv), that $\Gamma \cup \Sigma \vDash B$.

Compactness If $\Gamma \models A$, then there is a finite subset $\Gamma_0 \subseteq \Gamma$, such that $\Gamma_0 \models A$.

(REMEMBER: (o) A formula A is a logical consequence of a set of formulas Γ , in symbols $\Gamma \models A$ iff any interpretation I that satisfies all the formulas in Γ satisfies also A)

PROOF:

- (i) Trivial if Γ is finite. Trivial if A is a tautology. Assume A and therefore Γ satisfiable. Let us consider infinite case with A not a tautology. (ii) Let PA be the set of primitive propositions occurring in A (PA finite, being A one
- formula). (iii) Let I_1, \ldots, I_n (with $n \le 2^{|PA|}$, n finite), be all the interpretations I_i of PA that do not satisfy A, namely $I_i \not\models A$. They must exist as A is not a tautology. (iv) From $\Gamma \models A$ then there, should be I_1, \ldots, I_n' interpretations of the language of Γ .
- (iv) From $\Gamma \vDash A$ then there should be I'_1, \ldots, I'_n interpretations of the language of Γ , which are extensions of I_1, \ldots, I_n , and such that $I' \not\vDash \Gamma_k$ for some $\Gamma_k \in \Gamma$ (from (iii) and (o): if conclusion of implication does not hold then the premise does not hold). (v) Let $\Gamma_0 = \{\Gamma_1, \ldots, \Gamma_k\}$. Then $\Gamma_0 \vDash A$ (vacuously true since premise is false). (vi) Indeed if $I \vDash \Gamma_0$ then I is an extension of an interpretation J of PA that satisfies A, and therefore $I \vDash A$.

Deduction theorem If Γ , $A \models B$ then $\Gamma \models A \rightarrow B$

PROOF:

- (I) Assume by hypothesis that $I \models \Gamma$. We have two cases:
- (1.1) If $I \models A$, then $I \models B$ from hypothesis and therefore $I \models A \rightarrow B$.

(see inductive definition of implication satisfiability, i.e., $I \models A \rightarrow B$ when $I \models A$ then $I \models B$)

- (1.2) If $I \not\models A$, then (false) $\models B$ from hypothesis (since from (I) $I \models \Gamma$), and therefore
- $I \vDash A \longrightarrow B \text{ (in the hypothesis, if for every I the premise is false the implication is always true)}$
- (2) We can therefore conclude that $I \models A \rightarrow B$.

Refutation principle $\Gamma \models A$ iff $\Gamma \cup \{\neg A\}$ is unsatisfiable

PROOF:

- (⇒)
- (i) Suppose by contradiction that $\Gamma \cup \{\neg A\}$ is satisfiable.
- (ii) This implies that there is an interpretation I such that $I \models \Gamma$ and
- $I \models \neg A$, i.e., $I \not\models A$.
- (iii) This contradicts that fact (stated in the hypothesis) that all interpretations that satisfy Γ also satisfy A

(⇔)

- (i) Let $I \models \Gamma$.
- (ii) Then by the fact that $\Gamma \cup \{\neg A\}$ is unsatisfiable, we have that $I \not\models \neg A$,
- (iii) Therefore $I \models A$.
- (iv) We can conclude that $\Gamma \vDash A$ (iff for all I, both $I \vDash \Gamma$ and $I \vDash A$, then $\Gamma \vDash A$)

Mathematical Logics Propositional Logic (Properties and proofs) [Optional]

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

The content of these slides is optional – not tested by the exam

