Mathematical Logics Propositional Logic*

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

Reference(s):

 Francesco Berto, Logica da zero a Gödel, Laterza, 2018 (capitolo 1)

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

1 Lecture index

- I. Intuition
- 2. Language
- 3. Satisfiability
- 4. Validity and unsatisfiability
- 5. Logical conseguence and equivalence
- 6. Axioms and theories

Interpretation of Propositional Logic

Definition (Interpretation)

A Propositional interpretation is a function $I: PROP \rightarrow \{True, False\}$

Remark

If |PROP| is the cardinality of PROP, then there are $2^{**}|PROP|$ different interpretations, i.e. all the different subsets of PROP.

If |PROP| is finite then there is a finite number of interpretations.

Remark

A propositional interpretation can be thought as a subset S of PROP, and I is the characteristic function of S, i.e.,

$$A \in S$$
 iff $I(A) = True$.

Interpretation of Propositional Logic

Example					
-		р	q	r	Set theoretic representation
	I_1	True	True	True	$\{p,q,r\}$
	I_2	True	True	False	$\{p,q\}$
	lз	True	False	True	{ <i>p</i> , <i>r</i> }
	14	True	False	False	{ <i>p</i> }
	15	False	True	True	$\{q,r\}$
	16	False	True	False	$\{q\}$
	17	False	False	True	{ <i>r</i> }
	I ₈	False	False	False	{}

Satisfiability of a propositional formula

Definition (I satisfies a formula, $I \models A$)

A formula A is true in / satisfied by an interpretation I, in symbols $I \models A$, according to the following inductive definition:

- $I \models P \text{ if } I(P) = \text{True, with } P \in PROP$
- $I \models \neg A$ if not $I \models A$
- $I \models A \land B$ if, $I \models A$ and $I \models B$
- $I \models A \lor B$ if, $I \models A$ or $I \models B$
- $I \models A \rightarrow B$ if, when $I \models A$ then $I \models B$
- $I \models A \equiv B$ if, $I \models A$ iff $I \models B$

Satisfiability of a propositional formula

Example (interpretation)

Let $P = \{P, Q\}$. I(P) = True and I(Q) = False can be also expressed with $I = \{P\}$.

Example (Satisfiability)

Let $I = \{P\}$. Check if $I \models (P \land Q) \lor (R \rightarrow S)$:

Replace each occurrence of each primitive propositions of the formula with the truth value assigned by I, and apply the definition for connectives.

(True
$$\land$$
 False) \lor (False \rightarrow False) (1)

Satisfiability of a propositional formula

Proposition

If for any propositional variable P appearing in a formula A, I(P) = I'(P), then $I \models A$ iff $I' \models A$

Checking if I ⊨A

Lazy evaluation algorithm (1/2)

,

Checking if I ⊨A

Lazy evaluation algorithm (2/2)

```
check(I \models B \rightarrow C) if

check(I \models B)

then return check(I \models C)

else return YES

(A = B \equiv C)
check(I \models B \equiv C) if

check(I \models B)

then return check(I \models C)

else return not(check(I \models C)
```

Formalizing **English** Sentences

Exercise

Let's consider a propositional language where p means "Paola is happy", q means "Paola paints a picture", and r means "Renzo is happy".

Formalize the following sentences:

- "if Paola is happy and paints a picture then Renzo isn't happy"
 p ∧q →¬r
- 2 "if Paola is happy, then she paints a picture" $p \rightarrow q$
- ③ "It is not the case that Paola is happy and she does not paint a picture" $\neg (p \land \neg q)$ which is equivalent to $p \rightarrow q!!!$

The precision of formal languages allows to avoid the ambiguities of natural languages.

Mathematical Logics Propositional Logic*

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

Reference(s):

 Francesco Berto, Logica da zero a Gödel, Laterza, 2018 (capitolo 1)

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli