Mathematical Logics Propositional Logic *

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

Reference(s):

 Francesco Berto, Logica da zero a Gödel, Laterza, 2018 (capitolo 1)

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

- I. Intuition
- 2. Language
- 3. Satisfiability
- 4. Validity and unsatisfiability
- 5. Logical conseguence and equivalence
- 6. Axioms and theories

Definition (Propositional alphabet)

Logical symbols $\neg, \land, \lor, \supset, \equiv$

Non logical symbols A set **PROP** of symbols *P* called propositional variables

Separator symbols "(" and ")"

Definition (Well formed formulas (or simply formulas))

- every $P \in \mathbf{PROP}$ is an atomic formula
- every atomic formula is a formula
- if A and B are formulas then $\neg A$, $A \land B$, $A \lor B$, $A \supset B$, and $A \equiv B$ are formulas

Propositional variables and constants

- Propositional constants:
 - "B. Obama is drinking a bier"
 - "The U.S.A. president is drinking a bier",
 - "B. Obama si sta facendo una birra"
- Propositional variables: A, B, C, AA, ..., where a propositional variable can be substitued with a propositional constant, a propositional variable or in general any well formed (propositional) formula

Example ((non) formulas)		
Formulas	Non formulas	
$P \rightarrow Q$	ΡQ	
$P \rightarrow (Q \rightarrow R)$	$(P \to \land ((Q \to R)$	
$P \land Q \rightarrow R$	$P \land Q \rightarrow \neg R \neg$	

Reading formulas

Problem

How do we read the formula $P \land Q \rightarrow R$? The formula $P \land Q \rightarrow R$ can be read in two ways:

$$(P \land Q) \to R P \land (Q \to R)$$

Symbol priority

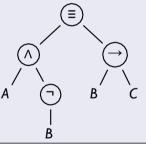
 \neg has higher priority, then \land, \lor, \rightarrow , \equiv with decreasing priority

Parenthesis can be used to stress or change the priority.

Symbol	Priority
_	1
\wedge	2
\vee	3
\rightarrow	4
≡	5

A formula can be seen as a tree. Leaf nodes are associated to propositional variables, while intermediate (non-leaf) nodes are associated to connectives.

For instance the formula $(A \land \neg B) \equiv (B \rightarrow C)$ can be represented as the tree



Subformulas

Definition

(Proper) Subformula

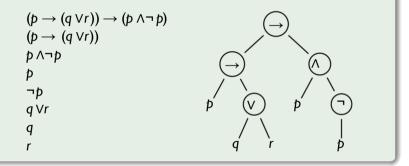
- A is a subformula of itself
- A and B are subformulas of A \land B, A \lor B A \supset B, eA \equiv B
- o A is a subformula of ¬A
- if A is a subformula of B and B is a subformula of C, then A is a subformula of C.
- A is a proper subformula of B if A is a subformula of B and A is different from B.

Remark

The subformulas of a formula represented as a tree correspond to all the different subtrees of the tree associated to the formula, one for each node.

Example

The subformulas of $(p \rightarrow (q \lor r)) \rightarrow (p \land \neg p)$ are



Proposition

Every formula has a finite number of subformulas

Mathematical Logics Propositional Logic *

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

Reference(s):

 Francesco Berto, Logica da zero a Gödel, Laterza, 2018 (capitolo 1)

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli