Mathematical Logics Set Theory*

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

- I. Introduction and motivation
- 2. Basic notions
- 3. Relations
- 4. Functions
- 5. Exercises

Given two sets A and B, a function f from A to B is a relation that associates to each element a in A exactly one element b in B. Denoted with

 $f: A \rightarrow B$

The domain of *f* is the whole set A; the image of each element *a* in A is the element *b* in B s.t. b = f(a); the co-domain of *f* (or image of *f*) is a subset of B defined as follows: $Im_f = \{b \in B \mid \text{there exists an } a \in A \text{ s.t. } b = f(a)\}$

Notice that: it can be the case that the same element in B is the image of several elements in A.

A function $f:A \rightarrow B$ is surjective if each element in B is image of some elements in A: for each $b \in B$ there exists an $a \in A$ s.t. f(a) = b

A function $f : A \rightarrow B$ is injective if distinct elements in A have distinct images in B: for each $b \in Im_f$ there exists a unique $a \in A$ s.t. f(a) = b

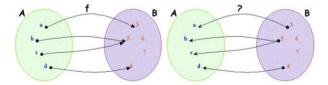
A function $f: A \rightarrow B$ is bijective if it is injective and surjective:

for each $b \in B$ there exists a unique $a \in A$ s.t. f(a) = b

If $f: A \to B$ is bijective we can define its inverse function: $f^{-1}: B \to A$

For each function f we can define its inverse relation; such a relation is a function iff f is bijective.

Example:



the inverse relation of f is NOT a function.

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. The composition of f and g is the function $g \circ f: A \rightarrow C$ obtained by applying f and then g:

$$(g \circ f)(a) = g(f(a))$$
 for each $a \in A$
 $g \circ f = \{(a, g(f(a)) | a \in A)\}$

Mathematical Logics Set Theory*

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli