Mathematical Logics Set Theory*

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

- I. Introduction and motivation
- 2. Basic notions
- 3. Relations
- 4. Functions
- 5. Exercises

The concept of **set** is considered a primitive concept in math

A set is a collection of elements whose description must be unambiguous and unique: it must be possible to decide whether an element belongs to the set or not.

Examples:

the students in this classroom , the points in a straight line , the cards in a playing pack

are all sets

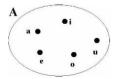
In set theory there are several description methods:

Listing: the set is described listing all its elements Example: $A = \{a, e, i, o, u\}$.

Abstraction: the set is described through a property of its elements

Example: $A = \{x \mid x \text{ is a vowel of the Latin alphabet} \}$

Eulero-Venn Diagrams: graphical representation that supports the formal description



Empty Set: \emptyset is the set containing no elements; Membership: $a \in A$, element belongs to the set A;

Non membership: $a \notin A$, element a doesn't belong to the set A;

Equality: A = B, iff the sets A and B contain the same elements;

inequality: $A \neq B$, iff it is not the case that A = B

Subset: $A \subseteq B$, iff all elements in A belong to B too; Proper subset: $A \subset B$, iff $A \subseteq B$ and $A \neq B$ We define the power set of a set A, denoted with P(A), as the set containing all the subsets of A.

Example: if $A = \{a, b, c\}$, then $P(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \}$

If A has n elements, then its power set P(A) contains 2^n elements.

Exercise: prove it!!!

Union: given two sets A and B we define the union of A and B as the set containing the elements belonging to A or to B or to both of them, and we denote it with $A \cup B$.

Example: if $A = \{a, b, c\}, B = \{a, d, e\}$ then $A \cup B = \{a, b, c, d, e\}$

Intersection: given two sets A and B we define the intersection of A and B as the set containing the elements that belongs both to A and B, and we denote it with $A \cap B$.

Example: if $A = \{a, b, c\}$, $B = \{a, d, e\}$ then $A \cap B = \{a\}$

Difference: given two sets A and B we define the difference of A and B as the set containing all the elements which are members of A, but not members of B, and denote it with A - B.

Example: if $A = \{a, b, c\}$, $B = \{a, d, e\}$ then $A - B = \{b, c\}$

Complement: given a universal set U and a set A, where $A \subseteq U$, we define the complement of A in U, denoted with \overline{A} (or C_UA), as the set containing all the elements in U not belonging to A.

Example: if U is the set of natural numbers and A is the set of even numbers (0 included), then the complement of A in U is the set of odd numbers.

Examples:

Given $A = \{a, e, i, o, \{u\}\}$ and $B = \{i, o, u\}$, consider the following statements:

0 B ∈ A	NO!	
② $(B - {i, o}) \in A$	ОК	
3 {a} ∪{i} ⊂ A	ОК	
④ {u}⊂A	NO!	
5 {{u}} ⊂ A	ОК	
I = Ø I = Ø	NO!	$B - A = \{u\}$
0 i ∈ A ∩ B	ОК	
🔕 {i, o} = A ∩ B	ОК	

Sets: Operation Properties

• $A \cap A = A$, $A \cup A = A$

•
$$A \cap B = B \cap A$$
,
 $A \cup B = B \cup A$ (commutative)

•
$$A \cap \emptyset = \emptyset$$

 $A \cup \emptyset = A$

•
$$(A \cap B) \cap C = A \cap (B \cap C),$$

 $(A \cup B) \cup C = A \cup (B \cup C)$ (associative)

Sets: Operation Properties (2)

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (distributive)
- $\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$ (De Morgan laws)
- **Exercise**: Prove the validity of all the properties.

Given two sets A and B, we define the Cartesian product of A and B as the set of ordered couples (a, b) where $a \in A$ and $b \in B$; formally, $A \times B = \{(a, b) : a \in A \text{ and } b \in B\}$

Notice that: $A \times B \neq B \times A$

Cartesian Product (2)

- Examples:
 - given $A = \{1, 2, 3\}$ and $B = \{a, b\}$, then $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$ and $B \times A = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}.$
 - Cartesian coordinates of the points in a plane are an example of the Cartesian product R × R
- The Cartesian product can be computed on any number n of sets A₁, A₂..., A_n, A₁ × A₂ × ... × A_n is the set of ordered n-tuple (x₁,..., x_n) where x_i ∈ A_i for each i = 1 ... n.

Mathematical Logics Set Theory*

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli