Mathematical Logics Introduction*

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

- I. Mental, computational and logical models
- 2. Language
- 3. Logical modeling
- 4. Why logic? Formal and informal languages/ models

Language

A (usually finite) set of symbols (elements of the alphabet) and formation rules to compose them to build "correct sentences" (usually unbound in length, still finite). For instance, in logic:

Monkey and GetBanana are symbols (atomic sentences)

- $\Box \quad Monkey \land GetBanana \text{ is a sentence (rule: } A \land B)$
- There are many types of languages:
 - □ Natural languages (e.g., Italian, English, ...)
 - Data languages (e.g., ER, UML, ...)
 - □ Programming languages (e.g., SQL, Java, C+, ...)
 - ... and formal languages

Language = syntax + semantics

Syntax - the way a language is written:

- Syntax is determined by a set of rules saying how to construct the expressions of the language from the set of atomic tokens (i.e., terms, characters, symbols)
- The set of atomic tokens is called alphabet of symbols, or simply the alphabet)

Semantics - the way a language is interpreted:

It determines the meaning of the syntactic constructs (expressions), that is, the relationship between syntactic constructs and the elements of some universe of meanings, which may or may not be formalized.

Mathematical Logics Introduction*

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli