## Mathematical Logics Description Logic: Tableaux

#### Fausto Giunchiglia and Mattia Fumagallli

University of Trento



\*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

- I. Idea: DL is a MultiModal Modal Logic
- 2. DL reasoning as MultiModal SAT reasoning
- 3. Examples: TBOX reasoning
- Examples: ABOX reasoning DL as a query language

TBox = {} ABox = {Child(John, Mary), Female(Mary)}

NL Query: Who are the individuals having only female children?

DL Query: T,  $A \vDash \forall$ Child.Female

Answer: {John}

□<u>ABox services</u> are generally applied to resolve a query

# How to use ABox Reasoning Services

| ABox Service       | Description                                                                                          | Query                                |
|--------------------|------------------------------------------------------------------------------------------------------|--------------------------------------|
| Instance retrieval | Given a concept C, retrieve all the instances <i>a</i> which satisfy C w.r.t. the ABox A.            | A ⊨ C                                |
| Instance checking  | Check whether an assertion $C(a)$ is entailed by the ABox, i.e. check whether <i>a</i> belongs to C. | $A \vDash C(a)$<br>$A \vDash R(a,b)$ |

**NOTE**: this means that before answering we need to expand the ABox (w.r.t. the TBox) and reason on the identified model (see before)

Answering Queries via instance checking (I)

TBox = {Horse  $\sqsubseteq$  Animal, Mule  $\sqsubseteq$  Animal} ABox = {Horse(Furia), Parent(Speedy, Furia)}

NL Query: Is Furia an animal?

DL Query: T, A ⊨ Animal(Furia)

YES, in fact the ABox can be expanded as follows: ABox = {Horse(Furia), Animal(Furia), Parent(Speedy, Furia)} Answering Queries via instance checking (II)

TBox = {Horse  $\sqsubseteq$  Animal  $\sqcap \neg$  Mule, Mule  $\sqsubseteq$  Animal} ABox = {Horse(Furia), Parent(Speedy, Furia)}

NL Query: Is Furia a mule?

DL Query:  $T, A \models Mule(Furia)$ 

NO, in fact the ABox can be expanded as follows: ABox = {Horse(Furia), Animal(Furia), ¬Mule(Furia), Parent(Speedy, Furia)}

# Answering Queries via instance checking (III)

TBox = {Horse  $\sqsubseteq$  Animal, Mule  $\sqsubseteq$  Animal} ABox = {Horse(Furia), Parent(Speedy, Furia)}

- NL Query: Is Furia a mule?
- DL Query: T,  $A \models Mule(Furia)$

NO (BY CLOSED WORLD ASSUMPTION), in fact the ABox can be expanded as follows:

ABox = {Horse(Furia), Animal(Furia), Parent(Speedy, Furia)}

If we drop closed world assumption the answer should be: I DO NOT KNOW

## Answering Queries via instance retrieval: Tableaux (I)

TBox = {Horse  $\sqsubseteq$  Animal, Mule  $\sqsubseteq$  Animal} ABox = {Horse(Speedy), Horse(Furia), Parent(Speedy, Furia)}

NL Query: Is there any animal which is not a horse nor a mule, and is parent of a horse?

DL Query:  $T, A \vDash \exists Parent. Horse \sqcap \neg$  (Horse  $\sqcap Mule$ ) i.e. is the formula satifiable?

## Answering Queries via instance retrieval: Tableaux (I)

TBox = {Horse  $\sqsubseteq$  Animal, Mule  $\sqsubseteq$  Animal} ABox = {Horse(Speedy), Horse(Furia), Parent(Speedy, Furia)}

Is  $\exists Parent.Horse \sqcap \neg$  (Horse  $\sqcap Mule$ ) satifiable?

**□-rule** A' = {  $\exists$  Parent.Horse(x),  $\neg$ (Horse  $\sqcap$  Mule)(x)} **\exists-rule** A' = {Horse(Furia), Parent(Speedy, Furia), ( $\neg$ Horse  $\sqcup$  $\neg$ Mule)(x)} **\sqcup-rule** A' = {Horse(Furia), Parent(Speedy, Furia),  $\neg$ Horse(Furia)}

inconsistent!

#### or

## Mathematical Logics Description Logic: Tableaux

#### Fausto Giunchiglia and Mattia Fumagallli

University of Trento



\*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli