Mathematical Logics Description Logic: Tbox and Abox

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

Lecture index

- I. Families of Description Logics
- 2. TBOX: syntax and semantics
- 3. TBOX: terminology
- 4. TBOX: reasoning
- 5. ABOX: syntax and semantics
- 6. ABOX: reasoning
- 7. Closed World Assumption (CWA) and Open World Assumption (OWA)

Given an ABox A, we reason (w.r.t. a TBox T) about the following:

- Satisfiability/Consistency: An ABox A is consistent with respect to T if there is an interpretation I which is a model of both A and T.
- Instance checking: checking whether an assertion C(a) is entailed by an ABox, i.e. checking whether a belongs to C.

 $A \models C(a)$ if every interpretation that satisfies A also satisfies C(a).

- Instance retrieval: given a concept C, retrieve all the instances a which satisfy C.
- Concept realization: given a set of concepts and an individual a find the most specific concept(s) C (w.r.t. subsumption) such that $A \models C(a)$.

NOTE: second and third services correspond to Query Answering

Reasoning via expansion of the ABox

The Reasoning services over an ABox w.r.t. an <u>acyclic</u> (*)TBox can be reduced to checking an expanded ABox.

We define the expansion of an ABox A with respect to T as the ABox A' that is obtained from A by replacing each concept assertion C(a) with the assertion C'(a), with C' the expansion of C with respect to T.

The expansion C'(a) of C(a) is the set of concepts C''(a) such that C''(a) are used to define C(a). The expansion A' of A with respect to T contains only primitive (not defined concepts).

DA is consistent with respect to T iff its expansion A' is consistent

□A is consistent iff A is satisfiable (**), i.e. non contradictory.

NOTE 2:

(*) acyclic when no cycles in definitions

(**) in PL, under the usual translation, with C(a) considered as a proposition different from C(b)

Т	Α
Undergraduate ⊑ ¬ Teach	Master(Chen)
Bachelor ≡ Student □ Undergraduate	PhD(Enzo)
Master \equiv Student $\square \neg$ Undergraduate	Assistant(Rui)
PhD ≡ Master ⊓ Research	
Assistant ≡ PhD ⊓ Teach	

The expansion of A w.r.t.T (concepts in black, NOT in blue):

Master(Chen) Student(Chen) ¬Undergraduate(Chen)	PhD(Enzo) Master(Enzo) Research(Enzo) Student(Enzo) ¬Undergraduate(Enzo)	Assistant(Rui) PhD(Rui) Teach(Rui) Master(Rui) Research(Rui) Student(Rui) – Undergraduate(Rui)
---	--	--

Satisfiability/Consistency: An ABox A is consistent with respect to T if there is an interpretation I which is a model of both A and T.

We say that A is consistent if it is consistent with respect to the empty TBox

Parent \equiv Mother \sqcup Father Father \equiv Male \sqcap hasChild Mother \equiv Female \sqcap hasChild

Т

Male \equiv Person $\square \neg$ Female

A Mother(Mary) Father(Mary)

A is <u>not</u> consistent w.r.t. T: In fact, from the expansion of T we get that Mother and Father are disjoint.

A is consistent (w.r.t. the empty TBox, no constraints)

Instance checking: checking whether an assertion C(a) is entailed by an ABox, i.e. checking whether a belongs to C.

 $A \models C(a)$ if every interpretation that satisfies A also satisfies C(a).

$A \models C(a) \text{ iff } A \cup \{\neg C(a)\} \text{ is inconsistent}$

Consider T and A from the previous example.

Is Phd(Rui) entailed? YES! The assertion is in the expansion of A. Instance retrieval: given a concept C, retrieve all the instances *a* which satisfy C.

Implementation: A trivial, but inefficent implementation consists in doing instance checking for all instances.

Consider T and A from the previous example.

Find all the instances of –Undergraduate Looking at the expansion of A we have {Chen, Enzo, Rui} Concept realization: given a set of concepts and an individual a find the most specific concept(s) C (w.r.t. subsumption ordering) such that $A \models C(a)$.

Dual problem of Instance retrieval

Implementation: A trivial, but inefficent implementation consists in doing instance checking for all concepts.

Abox - Concept realization

Consider T and A from the previous example.

т		A
Undergraduate	⊑ ¬ Teach	Master(Chen)
Bachelor	≡ Student ⊓ Undergraduate	PhD(Enzo)
Master	≡ Student ⊓ ¬ Undergraduate	Assistant(Rui)
PhD	≡ Master ⊓ Research	
Assistant	≡ PhD ⊓ Teach	

Given the instance Rui, and the concept set {Student, PhD, Assistant} find the most specific concept C such that $A \models C(Rui)$

- Rui is in the extension of all the concepts above.
- The following chain of subsumptions holds: Assistant \sqsubseteq PhD \sqsubseteq Student
- Therefore, the most specific concept is Assistant.

Mathematical Logics Description Logic: Tbox and Abox

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli