Mathematical Logics Description Logic: Tbox and Abox

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

Lecture index

- I. Families of Description Logics
- 2. TBOX: syntax and semantics
- 3. TBOX: terminology
- 4. TBOX: reasoning
- 5. ABOX: syntax and semantics
- 6. ABOX: reasoning
- 7. Closed World Assumption (CWA) and Open World Assumption (OWA)

Given two class-propositions P and Q, we have the following reasoning problems

- **Q**Satisfiability w.r.t. T = P?
- **Subsumption** $T \vDash P \sqsubseteq Q$? $T \vDash Q \sqsubseteq P$?
- **Equivalence** $T \vDash P \sqsubseteq Q \text{ and } T \vDash Q \sqsubseteq P?$
- **Disjointness** $T \models P \sqcap Q \sqsubseteq \bot$?

A concept P is satisfiable w.r.t. a terminology T, if there exists (or for all) an interpretation I with $I \models \theta$ for all $\theta \in T$, and such that $I \models P$, namely I(P) is not empty

In this case we also say that I is a model for P

In other words, the interpretation I not only satisfies P, but also complies with all the constraints in T

Satisfiability with respect to a TBox T

Suppose we describe the students in a course:

Undergraduate	$\sqsubseteq \neg$ Teach	
Bachelor	≡ Student ⊓ Undergraduate	
Master	≡ Student ⊓ ¬ Undergraduate	
PhD	≡ Master ⊓ Research	
Assistant	\equiv PhD \sqcap Teach	TBox T

The TBox is satisfiable. A possible model is:

TBox reasoning: subsumption

Let T be a TBox. A Subsumption problem (with respect to T): is defined as follows

$$\mathsf{T}\vDash\mathsf{P}\sqsubseteq\mathsf{Q}\;(\mathsf{P}\sqsubseteq_\mathsf{T}\mathsf{Q})$$

A concept P is subsumed by a concept Q with respect to T if $I(P) \subseteq I(Q)$ for every model I of T

NOTE: Subsumption reduces to entailment and validity (when T empty)

Subsumption with respect to a TBox T (I)

Suppose we describe the students in a course:

Undergraduate	$\sqsubseteq \neg$ Teach	
Bachelor	≡ Student ⊓ Undergraduate	
Master	≡ Student ⊓ ¬ Undergraduate	
PhD	≡ Master ⊓ Research	
Assistant	≡ PhD ⊓ Teach	TBox T

$\mathbf{T} \models \mathbf{PhD} \sqsubseteq \mathbf{Student}$

Subsumption with respect to a TBox T (2)

PhD ⊑ Student

Proof:

PhD

- \equiv Master \square Research
- \equiv (Student $\sqcap \neg$ Undergraduate) \sqcap Research
- \sqsubseteq Student

Let T be a TBox. An Equivalence problem (with respect to T) is defined as follows:

$(\mathsf{T} \vDash \mathsf{P} \equiv \mathsf{Q}) \; (\mathsf{P} \equiv_{\mathsf{T}} \mathsf{Q})$

Two concepts P and Q are equivalent with respect to T if I(P) = I(Q) for every model I of T.

Equivalence with respect to a TBox T(I)

Suppose we describe the students in a course:

Undergraduate	$\sqsubseteq \neg$ Teach	
Bachelor	≡ Student ⊓ Undergraduate	
Master	≡ Student ⊓ — Undergraduate	
PhD	≡ Master ⊓ Research	
Assistant	≡ PhD ⊓ Teach	TBox T

T ⊨ **Student** = **Bachelor** ⊔ **Master**

Equivalence with respect to a TBox T (2)

Student \equiv Bachelor \sqcup Master

<u>Proof</u>:

Bachelor ⊔ Master

- \equiv (Student \sqcap Undergraduate) \sqcup Master
- \equiv (Student \sqcap Undergraduate) \sqcup (Student $\sqcap \neg$ Undergraduate)
- \equiv Student \sqcap (Undergraduate $\sqcup \neg$ Undergraduate)
- **≡** Student ⊓⊤
- ≡ Student

Let T be a TBox. A Disjointness problem (with respect to T) is defined as follows:

$\mathsf{T}\vDash\mathsf{P}\sqcap\mathsf{Q}\sqsubseteq\bot(\mathsf{P}\sqcap\mathsf{Q}\sqsubseteq_\mathsf{T}\bot)$

Two concepts P and Q are disjoint with respect to T if their intersection is empty, $I(P) \cap I(Q) = \emptyset$, for every model I of T.

Disjointness with respect to a TBox T(I)

Suppose we describe the students in a course:

Undergraduate	$\sqsubseteq \neg$ Teach	
Bachelor	≡ Student ⊓ Undergraduate	
Master	≡ Student ⊓ − Undergraduate	
PhD	≡ Master ⊓ Research	
Assistant	≡ PhD ⊓ Teach	TBox T

$T \models Undergraduate \sqcap Assistant \sqsubseteq \bot$

Disjointness with respect to a TBox T (2)

It can be proved showing that:

 $T \models Undergraduate \sqcap Assistant \sqsubseteq \bot$

Proof:

Undergraduate ⊓ Assistant

- $\sqsubseteq \neg$ Teach \sqcap Assistant
- $\equiv \neg$ Teach \sqcap PhD \sqcap Teach
- $\equiv \perp \sqcap \mathsf{PhD}$

 $\equiv \bot$

Suppose we describe the students in a course:

Undergraduate	$\sqsubseteq \neg$ Teach
Bachelor	≡ Student ⊓ Undergraduate
Master	≡ Student ⊓ ¬ Undergraduate
PhD	≡ Master ⊓ Research
Assistant	≡ PhD ⊓ Teach

Is Bachelor ⊓ PhD satisfiable? NO!

Consider the following propositions:

Assistant, Student, Bachelor, Teach, PhD, Master ⊓ Teach

- Which pairs are subsumed/supersumed?
- Which pairs are disjoint?

100

Mathematical Logics Description Logic: Tbox and Abox

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli