## Mathematical Logics Modal Logic: Reasoning\*

### Fausto Giunchiglia and Mattia Fumagallli

University of Trento



\*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

# I. Introduction

- 2. Tableaux rules
- 3. Exercises (validity, satisfiability with model construction

## Analytic/Semantic Tableau Method - References

Early work by Beth and Hintikka (around 1955). Later refined and popularized by Raymond Smullyan:

• R.M. Smullyan. First-order Logic. Springer-Verlag, 1968.

Modern expositions include:

- M. Fitting. First-order Logic and Automated Theorem Proving. 2nd edition. Springer-Verlag, 1996.
- M. D'Agostino, D. Gabbay, R. Hähnle, and J. Posegga (eds.). Handbook of Tableau Methods. Kluwer, 1999.
- R. Hähnle. Tableaux and Related Methods. In: A. Robinson and A. Voronkov (eds.), Handbook of Automated Reasoning, Elsevier Science and MIT Press, 2001.
- Proceedings of the yearly Tableaux conference: <u>http://il2www.ira.uka.d/TABLEAUX/</u>

- I. Introduction
- 2. Tableaux rules
- 3. Exercises (validity, satisfiability with model construction

### Definition

Tableau A tableau is a finite tree with nodes marked with one of the following assertions:

$$w \vDash \phi \quad w \nvDash \phi \quad w Rw'$$

which is build according to a set of expansion rules (see next slide)

### Definition (Branch, open branch and closed branch)

A branch of a tableaux is a sequence  $n_1, n_2 \dots n_k$  where  $n_1$  is the root of the tree,  $n_k$  is a leaf, and  $n_{i+1}$  is a children of  $n_i$  for  $1 \le i < k$ . A closed branch is a branch that contains nodes marked with  $w \models \phi$  and  $w \nvDash \phi$ . All other branches are open. If all branches are closed, the tableau is closed.

| Expansion rules for propositional connectives                         |                                                                                  |                                                                                                                 |                      |                                                                        |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------|
| $\frac{w \models \phi \land \psi}{w \models \phi}$ $w \models \psi$   | $\frac{w \not\models (\phi \lor \psi)}{w \not\models \phi}$ $w \not\models \psi$ | $\frac{w \vDash \neg \phi}{w \nvDash \phi}$                                                                     | <u>w</u> ⊭ ¬φ<br>w⊨φ | $\frac{w \nvDash (\phi \supset \psi)}{w \vDash \phi}$ $w \nvDash \psi$ |
| $\frac{w \models \phi \lor \psi}{w \models \phi \mid w \models \psi}$ | $w \nvDash (\phi \land \psi)$ $w \nvDash \phi \mid w \nvDash \psi$               | $ \begin{array}{c c} w \vDash \varphi \supset \psi \\ \hline w \nvDash \varphi \mid w \vDash \psi \end{array} $ |                      |                                                                        |

#### Expansion rules for modal operators

$$\frac{w \models \Box \varphi}{w' \models \varphi} \text{ If } wRw' \text{ is already in the } \frac{w \not\models \Box \varphi}{wRw'} \text{ wher } w' \models \varphi \text{ brench} \text{ wher } w' \models \varphi \text{ brench} \text{ wher } w' \models \varphi \text{ brench} \text{ If } wRw' \text{ is already in the } \frac{w \not\models \Diamond \varphi}{w' \models \varphi} \text{ If } wRw' \text{ is already in the } \frac{w \not\models \Diamond \varphi}{w' \models \varphi} \text{ brench} \text{ brench} \text{ wher } w' \models \varphi \text{ wher } w' \models \varphi \text{ brench} \text{ brench} \text{ wher } w' \models \varphi \text{ brench} \text{ wher } w' \models \varphi \text{ brench} \text{ wher } w' \models \varphi \text{ brench} \text{ brench} \text{ wher } w' \models \varphi \text{ brench} \text{ brench$$

## Applications of expansion rules

- If a branch β = n<sub>1</sub>, ..., n<sub>k</sub> contains a node n<sub>i</sub> labelled with a premise of one of a rule ρ, and such a rule has not applied yet on this node, then ρ can be applied, and the branch is expanded in the following way
  - if ρ has only one consequence, then β is expanded in
     n<sub>1</sub>,...n<sub>k</sub>, n<sub>k+1</sub> where n<sub>k+1</sub> is labelled with the consequence of
  - if ρ has two consequences (one on top of the other), then β is expanded in n<sub>1</sub>, ... n<sub>k</sub>, n<sub>k+1</sub>, n<sub>k+2</sub> where n<sub>k+1</sub> and n<sub>k+2</sub> are labelled with the consequences of ρ
  - if ρ has two alternative consequences (i.e., two consequences separated by a "|"), then β is expanded into two branches n<sub>1</sub>,...n<sub>k</sub>, n<sub>k+2</sub> and n<sub>1</sub>,...n<sub>k</sub>, n<sub>k+2</sub>, where n<sub>k+1</sub> and n<sub>k+2</sub> are labelled with the alternative consequences of ρ

- I. Introduction
- 2. Tableaux rules
- 3. Exercises (validity, satisfiability with model construction)

### Example of tableaux

#### Example (Check satisfiability of $\Diamond (P \land \neg Q) \land \Box (P \lor Q)$ )

 $w \models \Diamond (P \land \neg Q) \land \Box (P \lor Q)$  $w \models \Diamond (P \land \neg O)$  $w \models \Box (P \lor Q)$ wRw  $w' \models P \land \neg O$ w'⊨P w′⊨¬0 w′⊭0  $w' \models P \lor O$ w'⊨P w'⊨0 OPEN CLOSED

- The tableau we have constructed starting from  $w \models \Diamond (P \land \neg Q) \land \Box (P \lor Q)$ , has an open branch (the one on the left)
- if we collect all the assertions of the form w ⊨ A and w ⊭ A for all atomic A and the assertions of the form and wRw<sup>'</sup>, which label the node of such an open branch we obtain

 $wRw', w' \models P, w' \not\models Q$ 

which corresponds to the model

$$w \xrightarrow{R} w'$$

with A true in w' and B false in w'

#### Example (Check validity of $\Diamond (A \lor B) \equiv \Diamond A \lor \Diamond B$ )

To check the validity of  $\Diamond(A \lor B) \equiv \Diamond A \lor \Diamond B$ , we construct a tableaux that searches for a countermodel. I.e., we check the satisfiability of  $\neg(\Diamond(A \lor B) \equiv \Diamond A \lor \Diamond B)$ 

$$w \models \neg (\Diamond (A \lor B) \equiv \Diamond A \lor \Diamond B)$$

$$w \models \Diamond (A \lor B) \equiv \Diamond A \lor \Diamond B$$

$$w \models \Diamond (A \lor B) \equiv \Diamond A \lor \Diamond B$$

$$w \models \Diamond (A \lor B) = \Diamond A \lor \Diamond B$$

$$w \models \Diamond (A \lor B) \qquad w \models \Diamond A \lor \Diamond B = \Diamond (A \lor B)$$

$$w \models \Diamond (A \lor B) \qquad w \models \Diamond A \lor \Diamond B$$

$$w \models \Diamond A \lor \Diamond B \qquad w \models \Diamond A \lor \Diamond B$$

$$w \models \Diamond A \lor \Diamond B \qquad w \models \Diamond A \qquad w \models \Diamond B$$

$$w \models \Diamond A \qquad w \models \Diamond A \qquad w \models \Diamond A \qquad w \models \Diamond B$$

$$w \models \Diamond B \qquad w ∉ \lor (A \lor B)$$

$$w \models \Diamond A \qquad w \models \Diamond A \qquad w \models \Diamond B$$

$$w \models \Diamond B \qquad w ∉ \lor A \qquad w \models B$$

$$w \models A \lor B \qquad w ` \models B \qquad CLOSED \qquad CLOSED$$

All the branches of the tableaux searching for a model of  $\neg((\Diamond(A \lor B) \equiv \Diamond A \lor \Diamond B))$  are closed. This implies that there are no models for such a formulas, i.e., that there are no countermodel for  $\Diamond(A \lor B) \equiv \Diamond A \lor \Diamond B$ , and finally that  $((A \lor B) \equiv \Diamond A \lor \Diamond B)$  and finally that  $((A \lor B) \equiv \Diamond A \lor \Diamond B)$ , is valid.

### Checking validity via tableaux

#### Example (Check validity of $\Box (A \lor B) \equiv \Box A \lor \Box B$ )

$$w \models \neg (\Box(A \lor B) \equiv \Box A \lor \Box B)$$

$$w \not\models \Box(A \lor B) \supseteq \Box A \lor \Box B$$

$$w \not\models \Box(A \lor B) \supseteq \Box A \lor \Box B$$

$$w \not\models \Box (A \lor B) \supseteq \Box A \lor \Box B$$

$$w \not\models \Box A \lor B$$

$$w \not\models A \lor B$$

$$w ' \not\models B \lor CloseD$$

$$w '' \not\models A \lor B$$

$$w '' \not\models B$$

$$CloseD$$

$$u '' \not\models A \lor B$$

$$w '' \not\models B$$

$$u '' \not\models A \lor B$$

$$u '' \not\models B$$

$$u '' \not\models A \lor B$$

$$u '' \not\models B$$

$$u '' \not\models A \lor B$$

$$u '' f A \lor B$$

The tableau is not closed as there is an open branch. This branch contains the statements: wRw ', wRw ",  $w' \not\models A. w' \models B$  $w'' \models A$  and w"  $\not\models$  B, that correspond to the model R R

with A false in w', B true in w', A true in w'' and B false in w''.

# Mathematical Logics Modal Logic: Reasoning\*

### Fausto Giunchiglia and Mattia Fumagallli

University of Trento



\*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli