Mathematical Logics Modal Logic: K and more*

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

Lecture index

- I. Calculi for modal logics
- 2. Modal K (Hilbert calculus)
- 3. Properties of accessibility relation and modal axioms
- 4. Modal KT
- 5. Modal KB
- 6. Modal KD
- 7. Modal KT4 = S4
- 8. Modal KT5 = S5
- 9. MultiModal Logics
- 10. Multiagent Knowledge and belief

R is euclidean and reflexive

NOTE = Euclidean and reflexive iff equivalence relation

An equivalence relation is a <u>binary relation</u> that is <u>reflexive</u>, <u>symmetric</u> and <u>transitive</u>. That is, for any objects a, b, and c:

- R(a , a)
- if R(a, b) then R(b, a)
- if R(a , b) and R(b , c) then R(a , c)

(reflexive property), (symmetric property), (transitive property).

IF A FRAME F is EUCLIDAN AND REFLEXIVE THEN F= <> 4> 1 4 4 $\forall w \cdot R(w, w); \forall w, v, u \cdot (R(w, v) \land R(w, u) \neg R(v, u))$ TOU . DUNTCO

R is euclidean and reflexive - soundness

Let *M* be a model on a euclidean frame F = (W, R) and *w* any world in *W*. We prove that *M*, $w \models \Diamond \varphi \supset \Box \Diamond \varphi$.

- **()** Suppose that M, $w \models \Diamond \varphi$ (Hypothesis).
- 2 The satisfiability condition of ◊ implies that there is a world w^l accessible from w such that M, w^l ⊨ φ.
- **(**) We have to prove that M, $w \models \Box \Diamond \varphi$ (Thesis)
- **(2)** From the satisfiability condition of \Box , this is equivalent to prove that for all world w^{ll} accessible from w M, $w^{ll} \models \Diamond \varphi$,
- Iet w^{ll} be any world accessible from w. The fact that R is euclidean, the fact that wRw^l implies that w^{ll}Rw^l.
- Since M, $w' \models \varphi$, the satisfiability condition of \Diamond implies that M, $w'' \models \Diamond \varphi$.
- **2** and therefore M, $w \models \Box \Diamond \varphi$. (Thesis)
- (a) Since from (Hypothesis) we have derived (Thesis), we can conclude that $M, w \models \Box \phi \supset \Box \Diamond \phi$.

R is euclidean and reflexive - completeness

Suppose that a frame F = (W, R) is not euclidean.

- If R is not euclidean then there are three worlds w, w¹, wⁿ ∈ W, such that wRw¹, wRw¹ but not w¹Rw¹.
- 2 Let M be any model on F, and let φ be the propositional formula p. Let V the set p false in all the worlds of W but w¹ where p is set to be true.
- From the fact that w[#] does not access to w¹, and in all the other worlds p is false, we have that w[#] ⊭ ◊p
- this implies that M, w ⊭ □◊p.
- On the other hand, we have that wRw¹, and w¹ ⊨ p, and therefore M, w ⊨ ◊p. M, w ⊭ □p ⊃ □□p.
- In summary: M, w ⊭ □◊p, and M, w ⊨ ◊P; from which we have that M, w ⊭ ◊p ⊃ □◊p.

Mathematical Logics Modal Logic: K and more*

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli