Mathematical Logics Modal Logic: K and more

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

Lecture index

- 1. Calculi for modal logics
- 2. Modal K (Hilbert calculus)
- 3. Properties of accessibility relation and modal axioms
- 4. Modal KT
- 5. Modal KB
- 6. Modal KD
- Modal KT4 = \$4
- 8. Modal KT5 = S5
- 9. MultiModal Logics
- 10. Multiagent Knowledge and belief

R is transitive and reflexive

The axiom 4

If a frame is reflexive and transitive then the formula

4 $\Box \varphi \supset \Box \Box \varphi$

holds.

2

HW. R(w, w), , +u, v, w. (R(w, v)) R(v, u) > R(u, u) W MU PLIL PUTCPH THE LOGIC OF KNOWEDUF WITH POSITIVE INT NOSPECTION

IF A FIMMERIS REPCEXIVE AND TRANSITIVE THON

キキガタンガガ4

R is transitive and reflexive - soundness

Let M be a model on a transitive frame F = (W, R) and w any world in W. We prove that M, $w \models \Box \varphi \supset \Box \Box \varphi$.

- Suppose that M, $w \models \Box \varphi$ (Hypothesis).
- ② We have to prove that M, $w \vDash \Box \Box \varphi$ (Thesis)
- **③** From the satisfiability condition of □, this is equivalent to prove that for all world w^l accessible from w M, w^l $\models □φ$.
- 4 Let w^l be any world accessible from w. To prove that M, $w^l \models \Box \varphi$ we have to prove that for all the world w^{ll} accessible from w^l , M, $w^{ll} \models \varphi$.
- **5** Let w^{II} be a world accessible from w^I , i.e., $w^I R w^{II}$.
- From the facts wRw¹ and w¹Rw¹¹ and the fact that R is transitive, we have that
 - wRw^{II}.
- Since M, $w \vDash \Box \varphi$, from the satisfiability conditions of \Box we have that M, $w^{||} \vDash \varphi$.
- § Since M, $w^{ll} \models \varphi$ for every world w^{ll} accessible from w^{l} , then M, $w^{l} \models \Box \varphi$.
- \bigcirc and therefore M, $w \models \Box\Box \varphi$. (Thesis) Since from (Hypothesis) we have derived (Thesis), we can conclude that
- \bigcirc M, $w \models \Box \varphi \supset \Box \Box \varphi$.

4

R is transitive and reflexive - completeness

Suppose that a frame F = (W, R) is not transitive.

- If R is not transitive then there are three worlds w, w^l , $w^{ll} \in W$, such that wRw^l , w^lRw^{ll} but not wRw^{ll} .
- 2 Let M be any model on F, and let φ be the propositional formula p. Let V the set p true in all the worlds of W but $w^{||}$ where p is set to be false.
- Solution From the fact that w does not access to w^{ll} , and that w^{ll} is the only world where p is false, we have that in all the worlds accessible from w, p is true.
- This implies that $M, w \models \Box p$.
- On the other hand, we have that $w^l R w^{ll}$, and $w^{ll} \models p$ implies that $M, w^l \models \Box \varphi$.
- and since wRw^l , we have that M, $w \models \Box\Box p$.
- In summary: M, $w \models \Box\Box p$, and M, $w \models \Box P$; from which we have that M, $w \models \Box p \supset \Box\Box p$.

5

Mathematical Logics Modal Logic: K and more

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli