Mathematical Logics Modal Logic: K and more*

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

Lecture index

- I. Calculi for modal logics
- 2. Modal K (Hilbert calculus)
- 3. Properties of accessibility relation and modal axioms
- 4. Modal KT
- 5. Modal KB
- 6. Modal KD
- 7. Modal KT4 = S4
- 8. Modal KT5 = S5
- 9. MultiModal Logics
- 10. Multiagent Knowledge and belief

The axiom **B**

If a frame is symmetric then the formula

$$\mathbf{B} \quad \varphi \supset \Box \Diamond \varphi$$

holds.

A FRAME F is symmetric > F = 4 > D Q Q $\forall wv. (R(w, v) > R(v, w))$ 2.74 42DCA DAY. °, Ø7Ψ

R is symmetric - soundness

Let M be a model on a symmetric frame F = (W, R) and w any world in W. We prove that M, $w \models \varphi \supset \Box \Diamond \varphi$.

- Suppose that M, $w \models \varphi$ (Hypothesis)
- 2 we want to show that M, $w \models \Box \Diamond \varphi$ (Thesis)
- **3** Form the satisfiability conditions of \Box , we need to prove that for every world w^{l}

accessible from *w* , *M* , $w' \models \Diamond \varphi$.

- Let w¹, be any world accessible from w, i.e., wRw¹
- **(5)** from the fact that R is symmetric, we have that $w^{I}Rw$
- Show the satisfiability condition of ◊, from the fact that w'Rw and that M, w ⊨ φ, we have that M, w' ⊨ ◊φ.
- o so for every world w' accessible from w, we have that M, $w' \models \Diamond \varphi$.
- Solution of \Box , M, $w \models \Box \Diamond \varphi$ (Thesis)
- Since from (Hypothesis) we have derived (Thesis), we can conclude that M, w ⊨ φ ⊃ □◊φ.

Suppose that a frame F = (W, R) is not Symmetric.

- If R is not symmetric then there are two worlds w, w' ∈ W such that wRw' and not w'Rw
- Let M be any model on F, and let φ be the propositional formula p. Let V the set p false in all the worlds of W but w where p is set to be true.
- From the fact that w^l does not access to w, it means that in all the worlds accessible from w^l, p is false,
- i.e. there is no world w^{ll} accessible from w^{l} wuch that M, $w^{ll} \models p$.
- by the satisfiability conditions of \Diamond , we have that M, $w' \not\models \Diamond p$.
- Since there is a world w'accessible from w, with $M, w \neq \Diamond p$, form the satisfiability condition of \Box we have that $M, w \neq \Box \Diamond p$.
- since M, $w \models p$, and M, $w \not\models \Box \Diamond p$. we have that M, $w \not\models p \supset \Box \Diamond p$.

Mathematical Logics Modal Logic: K and more*

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli