Mathematical Logics Modal Logic: K and more*

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

Lecture index

- I. Calculi for modal logics
- 2. Modal K (Hilbert calculus)
- 3. Properties of accessibility relation and modal axioms
- 4. Modal KT
- 5. Modal KB
- 6. Modal KD
- 7. Modal KT4 = S4
- 8. Modal KT5 = S5
- 9. MultiModal Logics
- 10. Multiagent Knowledge and belief

- Hilbert calculi: used for properties of logics
- Tableau calculus: used for reasoning

- This Lecture: the family of propositional modal logics
- Next Lecture: Tableaux calculus

Lecture index

- I. Calculi for modal logics
- 2. Modal K (Hilbert calculus)
- 3. Properties of accessibility relation and modal axioms
- 4. Modal KT
- 5. Modal KB
- 6. Modal KD
- 7. Modal KT4 = S4
- 8. Modal KT5 = S5
- 9. Recap
- 10. MultiModal Logics
- II. Multiagent Knowledge and belief

Hilbert axioms for the normal modal logic K

ΑΙ	$\varphi \supset (\psi \supset \varphi)$
A2	$(\varphi \supset (\psi \supset \vartheta)) \supset ((\varphi \supset \psi) \supset (\varphi \supset \vartheta))$
A 3	$(eg \psi \supset \varphi) \supset ((eg \psi \supset \varphi) \supset \varphi)$
MP	$\frac{\varphi \ \varphi \supset \psi}{\psi}$
К	$\Box(arphi \supset \psi) \supset (\Box arphi \supset \Box \psi)$
Nec	$\frac{\varphi}{\Box \varphi}$ the necessitation rule

Necessitation rule can be applied only if premise if a theorem

The above set of axioms and rules is called K, and every modal logic with a validity relation closed under the rules of K is a Normal Modal Logic.

Notice that **Nec** rule is not the same as

$$\varphi \supset \Box \varphi$$

indeed formula (3) is not valid.

Assignment Find a model in which (3) is false. Hint: build model with a model where φ is true and $\Box \varphi$ is false (namely $\neg \Box \varphi$ is true)

Nec: In Hilbert calculi there is difference from deduction and proof. Deduction theorem does not hold

(3)

Mathematical Logics Modal Logic: K and more*

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli