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Validity relation on frames

A formula φ is valid in a world w of a frame F, in symbols

F, w ⊨ φ iff

M, w ⊨ φ for all I with M = ‹F, I › 

A formula φ is valid in a frame F, in symbols F ⊨ φ iff

F, w ⊨ φ for all w ∈ W

If C is a class of frames, then a formula φ is valid in the class of frames 

C, in symbols ⊨C   φ iff

F ⊨ φ for all F ∈ C

A formula φ is valid, in symbols ⊨ φ iff

F ⊨ φ for all models frames F
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Logical consequence

φ is a local logical consequence of Γ, in symbols Γ ⊨ φ, if for  

every model M = ‹F, I › and every point w ∈ W ,

M, w ⊨ Γ implies that M, w ⊨ φ

φ is a logical consequence of Γ in a class of frames C , in  

symbols Γ ⊨C φ if for avery model M = ‹F, I › with F ∈ C  and 

every point w ∈ W ,

M, w ⊨ Γ implies that M, w ⊨ φ
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NOTE: Unsatisfiability and Logical equivalence defined as usual



ML Properties (same as most logics)

Proposition

A Valid →A satisfiable ←→ A not unsatisfiable

A unsatisfiable ←→ A not satisfiable →A not Valid
Γ, A ⊨B ←→ Γ ⊨A → B

Γ ⊨ φ ←→ Γ ∪ {¬φ} not satisfiable
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Proposit ion

if A is then ¬ A is

Valid Unsatisfiable

Satisfiable not Valid

not Valid Satisfiable

Unsatisfiable Valid



Exercises

Exercise

Show that each of the following formulas is not valid by  

constructing a frame F = (W , R) that contains a world that does  

not satisfy them.

1

2

3

□⊥

◊φ ⊃ □φ

◊□φ ⊃ □◊φ
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Exercises

Exercise

Prove that the following formulae are  valid:

⊨ □(φ ∧ ψ) ≡ □φ ∧ □ψ

⊨ ◊(φ ∨ ψ) ≡ ◊φ ∨ ◊ψ

⊨ ¬◊φ ≡ □¬φ

¬□◊◊□□◊□φ ≡ ◊□□◊◊□◊¬φ (i.e., pushing in ¬  changes

□ into ◊ and ◊ into □)

Suggestion:  keep in mind the analogy □/∀ and ◊/∃.
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Exercise

Exercise

Consider the frame F = (W , R) with

W = {0, 1, . . . n − 1}

R = {(0, 1), (1, 2), . . . , (n − 1, 0)}

Show that the following formulas are valid in F

1 □φ ≡ ◊φ

2 φ ≡ □ . . .  □φ

3

4

can you explain which property of the frame R is formalized  

by formula 1 and 2?

Can you imagine another frame F/, different from F that  

satisfies formulas 1 and 2?

Answers also the following questions:
n
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