Mathematical Logics Modal Logic: Introduction*

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

- I. Intuition
- 2. Language
- 3. Relational structures and Satisfiability
- 4. Validity, unsatisfiability, Logical conseguence and equivalence

Validity relation on frames

A formula φ is valid in a world w of a frame F, in symbols F, $w \models \varphi$ iff

M,
$$w \models \varphi$$
 for all *I* with $M = \langle F, I \rangle$

A formula φ is valid in a frame *F*, in symbols $F \vDash \varphi$ iff

F, $w \models \varphi$ for all $w \in W$

If C is a class of frames, then a formula φ is valid in the class of frames C, in symbols $\models_C \varphi$ iff

 $F \vDash \varphi$ for all $F \in \mathbb{C}$

A formula φ is valid, in symbols $\vDash \varphi$ iff

 $F \vDash \varphi$ for all models frames F

Logical consequence

• φ is a local logical consequence of Γ , in symbols $\Gamma \models \varphi$, if for every model $M = \langle F, I \rangle$ and every point $w \in W$,

M, $w \models \Gamma$ implies that *M*, $w \models \varphi$

• φ is a logical consequence of Γ in a class of frames C, in symbols $\Gamma \models_C \varphi$ if for avery model $M = \langle F, I \rangle$ with $F \in C$ and every point $w \in W$,

M, $w \models \Gamma$ implies that *M*, $w \models \varphi$

NOTE: Unsatisfiability and Logical equivalence defined as usual

ML Properties (same as most logics)

Proposition

A Valid \rightarrow A satisfiable $\longleftrightarrow A$ not unsatisfiable A unsatisfiable $\longleftrightarrow A$ not satisfiable $\rightarrow A$ not Valid $\Gamma, A \models B \longleftrightarrow \Gamma \models A \rightarrow B$ $\Gamma \models \varphi \longleftrightarrow \Gamma \cup \{\neg \varphi\}$ not satisfiable

Proposition		
	if A is	then ¬ A is
	Valid	Unsatisfiable
	Satisfiable	not Valid
	not Valid	Satisfiable
	Unsatisfiable	Valid

Exercise

Show that each of the following formulas is not valid by constructing a frame F = (W, R) that contains a world that does not satisfy them.

- 0 □⊥
- $\bigcirc \ \Diamond \varphi \supset \Box \varphi$
- $\bigcirc \bigcirc \Box \varphi \supset \Box \Diamond \varphi$

Exercise

Prove that the following formulae are valid:

- $\vDash \Box(\varphi \land \psi) \equiv \Box \varphi \land \Box \psi$
- $\models \Diamond(\phi \lor \psi) \equiv \Diamond \phi \lor \Diamond \psi$
- $\models \neg \Diamond \varphi \equiv \Box \neg \varphi$
- $\neg \Box \Diamond \Diamond \Box \Box \Diamond \Box \varphi \equiv \Diamond \Box \Box \Diamond \Diamond \Box \Diamond \neg \varphi$ (i.e., pushing in \neg changes \Box into \Diamond and \Diamond into \Box)

Suggestion: keep in mind the analogy \Box/\forall and \Diamond/\exists .

Exercise

Exercise

Consider the frame F = (W, R) with

n

•
$$W = \{0, 1, ..., n - 1\}$$

•
$$R = \{(0, 1), (1, 2), \dots, (n - 1, 0)\}$$

Show that the following formulas are valid in F

Answers also the following questions:

- a can you explain which property of the frame R is formalized by formula 1 and 2?
- Can you imagine another frame F^I, different from F that satisfies formulas I and 2?

Mathematical Logics Modal Logic: Introduction*

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli