Mathematical Logics Modal Logic: Introduction*

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

- I. Intuition
- 2. Language
- 3. Relational structures and Satisfiability
- 4. Validity, unsatisfiability, Logical conseguence and equivalence

Modal logics & relational structures

The most common extensional semantics of modal logics are given in terms of relational structures.

Definition (Relational structure)

A relational structure is a tuple

 $\langle W, R_{a_1}, \ldots, R_{a_n} \rangle$

where $R_{a_i} \subseteq W \times \ldots \times W$

- each w ∈ W is called, point (world, state, time instant, situation, . . .)
- each R_{a_i} is called accessibility relation (or simply relation)

Examples of Relational structures

Strict partial order (SPO)

 $\langle W, \langle \rangle \langle \rangle$ is transitive and irreflexive¹

Strict linear order

⟨W, <> (SPO) + for each v ≠ w ∈ W, v < w or w < v
Partial order (PO)
⟨W, ≤> ≤ is transitive, reflexive, and antisymmetric

• Linear order

 $\langle W, \leq \rangle$ (PO) + for each v, $w \in W$, $v \leq w$ or $w \leq v$

- Labeled transition system (LTS) $\langle W, R_a \rangle_{a \in A}$ and $R_a \subseteq W \times W$
- XML document

 $\langle W, R_l \rangle_{l \in L}$, W contains the components of an XML document and L is the set of labels that appear in the document

¹Antisymmetry follows.

XML document as a relational stucture

Semantics for the basic modal logic

A basic frame (or simply a frame) is an algebraic structure

 $F = \langle W, R \rangle$

where $R \subseteq W \times W$.

An interpretation *I* (or assignment) of a modal language in a frame *F*, is a function

$$I: P \rightarrow 2^W$$

Intuitively $w \in I(p)$ means that p is true in w, or that w is of type p. A model M is a pair (frame, interpretation). I.e.:

 $M = \langle F, I \rangle$

Truth is relative to a world, so we define that relation of \models between a world in a model and a formula

M, w ⊨ p	$iff w \in I(p)$
$M,w\vDash\varphi\wedge\psi$	iff M, $w \vDash \varphi$ and M, $w \vDash \psi$
$\textit{M, w} \vDash \varphi \lor \psi$	iff <i>M</i> , $w \vDash \varphi$ or <i>M</i> , $w \vDash \psi$
$M,w\vDash \varphi \supset \psi$	iff <i>M</i> , $w \vDash \varphi$ implies <i>M</i> , $w \vDash \psi$
$M,w\vDash \varphi \equiv \psi$	iff <i>M</i> , $w \vDash \varphi$ iff <i>M</i> , $w \vDash \psi$
$M, w \vDash \neg \varphi$	iff not <i>M</i> , $w \vDash \varphi$
$M, w \vDash \Box \varphi$	iff for all w [/] s.t. wRw [/] , M, w [/] $\vDash \varphi$
$M, w \vDash \Diamond \varphi$	iff there is a w $^{\prime}$ s.t. wRw $^{\prime}$ and M, w $^{\prime}\vDash\varphi$

 φ is globally satisfied in a model *M*, in symbols,

 $M \vDash \varphi$ iff $M, w \vDash \varphi$ for all $w \in W$

Satisfiability example

formula true at w	property of w
¢⊤	w has a successor point
◊◊T	<i>w</i> has a successor point with a successor point
(◊◊T	there is a path of length <i>n</i> starting at <i>w</i>
	w does not have any successor point
	every successor of <i>w</i> does not have a suc- cessor point
□□⊥ n	every path starting form <i>w</i> has length less then <i>n</i>

formula true at w	property of w
¢p	w has a successor point which is p
¢◊p	w has a successor point with a successor
	point which is p
<u>◊</u> ◊ <i>p</i>	there is a path of length n starting at w
n	and ending at a point which is p
□⊅	every successor of w are p
□□p	all the successors of the successors of w
	are þ
, □ □, þ	all the paths of length <i>n</i> starting form <i>w</i>
 n	ends in a point which is p

Modalities

Modality	Symbol	Expression Symbolised
Alethic	$\Box arphi \ \phi \phi$	it is necessary that $arphi$ it is possible that $arphi$
Deontic	Οφ Ρφ Fφ	it is obligatory that $arphi$ it is permitted that $arphi$ it is forbidden that $arphi$
Temporal	Gφ Fφ	it will always be the case that φ it will eventually be the case that φ
Epistemic	Β _α φ Κ _α φ	agent a believes that $arphi$ agent a knows that $arphi$
Contextual	$ist(c, \varphi)$	φ is true in the context c
Dynamic	[α]φ (α)φ	φ must be true after the execution of program α φ can be true after the execution of program α
Computational	ΑΧφ ΑGφ ΑFφ ΑφUϑ ΕΧφ	φ is true for every immediate successor state φ is true for every successor state φ will eventually be true in all the possible evolutions φ is true until ϑ becomes true φ is true in at least one immediate successor state

Properties of accessibility relation

- Different logics are interpreted in structures of different shape
- **Temporal logic** (logic of time): the accessibility relation is supposed to represent a temporal relation, and wRw^l means that w^l is a future world w.r.t. w (example:ToMorrow after ToDay). Two types of structures: tree or set of paths in the direction of time for future and past. Root: the world now.
- **Epistemic Logic** (Logic of beliefs of agents): the accessibility relation is used to represent the beliefs of an agent A, and wRw^l represents the fact that w^l is a possible situation coherent with its actual situation w (example: Fausto thinks that it is raining). Hierarchical structures with root: the world
- **Description Logics** (logic of Data Bases and knowledge representatio): the accessibility relation is supposed to represent a relation between two concepts (classes) (example: the father of a person is a male). Structure is a Knowledge graph with no restrictions on shape

Mathematical Logics Modal Logic: Introduction*

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli