Mathematical Logics Modal Logic: Introduction*

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

- I. Intuition
- 2. Language
- 3. Relational structures and Satisfiability
- 4. Validity, unsatisfiability, Logical conseguence and equivalence

If P is a set of primitive proposition, the set of formulas of the basic modal logic is defined as follows:

- each $p \in P$ is a formula (atomic formula);
- if A and B are formulas then $\neg A$, $A \land B$, $A \lor B$, $A \supset B$ and $A \equiv B$ are formulas
- if A is a formula $\Box A$ and $\Diamond A$ are formulas.

NOTE: there are also first order modal logics (not covered in this class)

Intuitive interpretation of modal logic

The formula $\Box \varphi$ can be intuitively interpreted in many ways

- φ is necessarily true (classical modal logic)
- φ is known/believed to be true (epistemic logic)
- φ is provable in a theory (provability logic)
- φ will be always true (temporal logic)

• • • •

In all these cases $\Diamond \varphi$ is interpreted as $\neg \Box \neg \varphi$.

In other words, $\Diamond \varphi$, stands for $\neg \varphi$ is not necessarily true, that is, φ is possibly true.

Mathematical Logics Modal Logic: Introduction*

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli