Mathematical Logics Modal Logic: Introduction*

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

Lecture index

- L. Intuition
- 2. Language
- 3. Relational structures and Satisfiability
- 4. Validity, unsatisfiability, Logical conseguence and equivalence

TestBooks and Readings

- Hughes, G. E., and M.J. Cresswell (1996) A New Introduction to Modal Logic. Routledge.
 Introductory textbook. Provides an historic perspective and a lot of explanations.
- Blackburn, Patrick, Maarten de Rijke, and Yde Venema (2001)
 Modal Logic. Cambridge Univ. Press
 More modern approach. It focuses on the formalisation of frames and structures.
- Chellas, B. F. (1980) Modal Logic: An Introduction. Cambridge Univ. Press

The focus is on the axiomatization of the modal operators $\ \Box$ and $\ \diamondsuit$

What is Modality?

- A modality is an expression that is used to qualify the truth of a judgement (or, in other words, an operator that expresses a "mode" in which a proposition is true)
- It can be seen as an operator that takes a proposition and returns a more complex proposition.

Proposition	Modal Expression	
John drives a Ferrari	John is able to drive a Ferrari	
Everybody pays taxes	It is obligatory that everybody pays taxes	

 As an example, a possible modality is expressed in natural language through modal verbs such as can/could, may/might, must, will/would, and shall/should.

What is Modality?

- In logic, modalities are formalized using an operator such as \Box (and its dual \Diamond) that can be applied to a formula φ to obtain another formula $\Box \varphi$ ($\Diamond \varphi$).
- The truth value of $\Box \varphi$ is **not** a function of the truth value of φ (even if the truth values are related, it is a relation).

Example

- The fact that John is able to drive a Ferrari may be true independently from the fact that John is actually driving a Ferrari.
- The fact that it is obligatory that everybody pays taxes is typically true, and this is independent from the fact that everybody actually pays taxes.

Note: \neg is not a modal operator since the truth value of $\neg \varphi$ is a function of the truth value of φ .

Modalities

- A modality is an expression that is used to qualify the truth of a judgement.
- Historically, the first modalities formalized with modal logic were the so called alethic modalities i.e.,
 - lacktriangledown it is possible that a certain proposition holds, usually denoted with $\Diamond arphi$
- Afterwards a number of modal logics for different "qualifications" have been studied (see below).

Modalities

Modality	Symbol	Expression Symbolised
Alethic	$\Box \varphi \\ \Diamond \varphi$	it is necessary that $ arphi $ it is possible that $ arphi $
Deontic	Οφ Ρφ Fφ	it is obligatory that $ \varphi $ it is permitted that $ \varphi $ it is forbidden that $ \varphi $
Temporal	Gφ Fφ	it will always be the case that φ it will eventually be the case that φ
Epistemic	$B_a arphi$ $K_a arphi$	agent a believes that $arphi$ agent a knows that $arphi$
Contextual	$ist(c, \varphi)$	arphi is true in the context c
Dynamic	[α]φ (α)φ	arphi must be true after the execution of program $lpha$ $arphi$ can be true after the execution of program $lpha$
Computational	AΧφ AGφ AFφ AφUϑ EΧφ	φ is true for every immediate successor state φ is true for every successor state φ will eventually be true in all the possible evolutions φ is true until ϑ becomes true φ is true in at least one immediate successor state

Mathematical Logics Modal Logic: Introduction*

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli