L12.X.FOL.Exercises

Adolfo Villafiorita

<2020-10-24 Sat>

Outline

Existential with \wedge , **Universal with** \supset

Oh my! Delta rules!

Informal to Formal and Tableaux

Validity, Satisfiability, Unsatisfiability

Informal to Formal

Esiste uno studente intelligente

Approach with ⊃ [wrong!]

 $\exists x.(Student(x) \supset Smart(x))$ (issue when premiss is false)

Approach with \(\text{[correct!]}

 $\exists x.(Student(x) \land Smart(x))$

Explanation

World

	not Smart	Smart
Student	Sam	Stephan
not Student	Peter	Pamela

Sastifiability wrt an Assignment

 $\exists x.(Student(x) \supset Smart(x))$

 $\exists x.(Student(x) \land Smart(x))$

a[x/]	Student(x)	Smart(x)	\supset	\wedge	Comment
Sam	Т	F	F	F	Equivalent, here
Stephan	Т	Т	Τ	Τ	Equivalent, here
Peter	F	F	Т	F	⇒ is "wrongly" true
Pamela	F	Т	Т	F	⇒ is "wrongly" true

"wrongly" true: it does not capture our sentence in English

Universal with Implication

Chi studia è intelligente

Approach with ⊃ [correct!]

 $\forall x.(Student(x) \supset Smart(x))$

Approach with \(\begin{bmatrix} \text{wrong!} \end{bmatrix}

 $\forall x.(Student(x) \land Smart(x))$ Issue when we have an interpretation in which some people are not students.

Explanation

World

Sam

Peter Pamela

Stephan

not Student Peter The "cell" student-smart should be empty, because it is not the case

Student

that someone is a student and not smart.

Interpretation $\forall x.(Student(x) \supset Smart(x))$

 $\forall x.(Student(x) \land Smart(x))$

	(-			()		(
,	г	,	-	<u> </u>	 1./	`	

 \forall a[x/...] Student(x)

Smart(x)

not Smart Smart

Pamela

Stephan, Sam

∧ makes it "wrongly" false

6/19

∧ makes it "wrongly" false

Equivalent, here

Equivalent, here

Gamma and Delta Rules

- **1.** I can reuse a term with $\forall x.P(x)$ and $\neg \exists x.P(x)$
- **2.** Why do I need to pick a fresh variable with $\exists x.P(x)$ and $\neg \forall x.P(x)$? Answer:
 - ► The first set of formulas predicates over the whole domain and, hence, I can pick whatever term I like
 - ➤ The second set of formulas, instead, asserts the existence of (at least) one element in the domain. I don't know which one it is and, hence, I cannot assume it is exactly the one I already picked (I would be arbitrarily restricting models)

Remark:

► See: L11 at the Existential Quantification Rule slide.

Informal to Formal

Gli scienziati leggono i libri. Fred è uno scienziato. Nessun uomo primitivo leggeva libri. Fred legge libri? Fred è un uomo primitivo?

- ► three sentences in our theory
- ▶ two formulas to prove
- ▶ problem type: $\Gamma \models \alpha$

Language

General:

► the standard syntactic elements of FOL (logical connectors, variables)

Domain Specific:

- ightharpoonup one constant: $\{f\}$
- ▶ predicates: *S*, *LL*, and *P* of arity 1

Formalization in First Order Logic

Formalization of formulas in **□**

```
\forall x.(S(x) \supset LL(x))
S(f)
\neg \exists x.(P(x) \land LL(x))
```

Formalization of formulas to prove

LL(fred)?
P(fred)?

Remark: finite domain, we reason about Fred in PL.

Proving: LL(f)

Tableau

Remarks

- ► All branches closed, the formula is unsatisfiable
- ➤ Since we assume the premiss to hold, it is -LL(f) causing the "troubles", hence LL(f) must be satisfiable (in fact, if you think about it, using LL(f) would leave the right branch open).
- ➤ Some formulas are irrelevant for the proof at hand

Proving: P(f)

Different approach: we build the Tableau with P(f).

Definitions

A formula is:

- ► Valid if satisfied by every model
- Satisfiable if there is at least one model
- Unsatisfiable if there are no models

f	$\neg f$	Comment
valid	unsatisfiable	all for f , nothing for $\neg f$
satisfiable	not valid	some for f , $\neg f$ can't have them all
not valid	satisfiable	
unsatisfiable	valid	

Validity, Satisfiability, Unsatisfiability

How do I check for validity, satisfiability, unsatisfiability?

Preliminary Considerations:

- ightharpoonup Valid formulas are such for structural properties (e.g., A $\vee \neg$ A)
- ▶ Same for unsatisfiable (e.g., $A \land \neg A$)
- ► For satisfiable formulas, which are not valid, there are models satisfying A and models satisfying ¬ A

Ho do I check for Validity, Satisfiability, Unsatisfiability?

- **1.** Meta reasoning: I reason about the structure of formulas, I use my deduction capabilities to argument
- 2. "Semantic" reasoning: I build the models I need to prove my assertion (however, reasoning about validity/unsatisfiability falls back to case 1, because you need to describe the way in which models are built)
- **3.** Deductive reasoning: I use Hilbert or another calculus to prove a property (good for validity and unsatisfiability)
- **4.** Tableaux: using the formula in its positive or negative form, to test different properties.

Nice discussion and four exercises on: Checking the validity of a few FOL formulas.

Example 1: $\forall x P(x)$

- $ightharpoonup \forall x P(x)$
- ► Intuitively: satisfiable, since we have a predicate *P* and I am pretty sure I can find some models satisfying *P* and some other not satisfying *P*
- ➤ Solution:
 - ▶ build two models, one satisfying $\forall x P(x)$ and the other satisfying $\neg \forall x P(x)$
 - ▶ use a Tableau, if you are really lost

Example 2: $\forall x.P(x) \supset \exists yP(y)$

- $ightharpoonup \forall x.P(x) \supset \exists yP(y)$
- ▶ Intuitively: valid, since if a *P* is true for every element of the domain it will also be true for a specific element **and** if does not hold for some elements, the premiss if false and the formula still true.
- ➤ Solution:
 - building models does not help here: we would need to formalize the intuition above.
 - use a Tableau with the negated formula, which must be unsatisfiable.

Example 2: Tableau

What now?

- ► The Materials page on the website has been updated with various references and exercises
- A bit of "scavenging" and might be necessary, but there are many examples you can work on
- ► LogicTools on Datascientia local instance of the Logic Tools, where you can have PL and FOL problems solved. The tools are more relevant for PL than for FOL
- ► Tree Proof Generator builds Tableaux for PL and FOL