Mathematical Logics FOL: Reasoning as deduction

Fausto Giunchiglia and Mattia Fumagalli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

Lecture index

- I. Reasoning problems (recap)
- 2. Hilbert systems (VAL forward chaining)
- 3. Tableaux systems ((un)-SAT backward chaining)
- 4. Correctness and completeness of Tableau
- 5. Examples
- 6. Termination
- 7. Countermodels

Some definition for tableaux

Definition (Closed branch)

A closed branch is a branch which contains a formula and its negation.

Definition (Open branch)

An open branch is a branch which is not closed

Definition (Closed tableaux)

A tableaux is closed if all its branches are closed.

Definition (logical consequence via Tableaux)

Let φ be a first-order formula and Γ a finite set of such formulas. We write $\Gamma \vdash \varphi$ to say that there exists a closed tableau for $\Gamma \cup \{\neg \varphi\}$

Theorem (Correctness / soundness)

$$\Gamma \vdash \varphi \quad \Rightarrow \quad \Gamma \vDash \varphi$$

Theorem (completeness)

$$\Gamma\vDash \varphi \quad \Rightarrow \quad \Gamma\vdash \varphi$$

Remark I

Proof: trivial, follows directly from definition. Consequence of refutation theorem (holding also for FOL)

Remark 2

The mere existence of a closed tableau does not mean that we have an effective method to build it! Concretely: we don't know how often and in which way we have to apply] the γ -rules $(\forall x \varphi(x) \Rightarrow \varphi[x/t])$, and what term to use in the substitution. Mathematical Logics FOL: Reasoning as deduction

Fausto Giunchiglia and Mattia Fumagalli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli