Mathematical Logics FOL: Reasoning as deduction

Fausto Giunchiglia and Mattia Fumagalli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

Lecture index

- I. Reasoning problems (recap)
- 2. Hilbert systems (VAL forward chaining)
- 3. Tableaux systems ((un)-SAT backward chaining)
- 4. Correctness and completeness of Tableau
- 5. Examples
- 6. Termination
- 7. Countermodels

Reasoning problems in FOL

In FOL we have three main reasoning problems (as in all logics)

Satisfiability

Find an interpretation *I* that satisfies a closed formula φ . I.e., check if there is a I such that $I \models \varphi$.

Validity

Check if a formula φ is valid, i.e., if for all interpretations $I, I \vDash \varphi$

Logical consequence

Check if a formula φ is a logical consequence of a set of formulas Γ , i.e.,

 $\Gamma \vDash \varphi$

- Model checking done mainly in finite domains where it reduces to PL Model checking (see before). For model checking in infinite domains take Formal Methods course (main applications: SW and HW verification)
- Logical Equivalence via Logical Consequence

FOL Properties (Recap)

Proposition

 $\begin{array}{l} A \ Valid \longrightarrow A \ satisfiable \longleftrightarrow A \ not \ unsatisfiable \\ A \ unsatisfiable \longleftrightarrow A \ not \ satisfiable \Longrightarrow A \ not \ Valid \\ \Gamma, A \vDash B \longleftrightarrow \Gamma \vDash A \Longrightarrow B \\ \Gamma \vDash \phi \ \longleftrightarrow \ \Gamma \cup \{\neg \phi\} \ not \ satisfiable \end{array}$

Proposition

if A is	then ¬A is
Valid	Unsatisfiable
Satisfiable	not Valid
not Valid	Satisfiable
Unsatisfiable	Valid

Lecture index

- I. Reasoning problems (recap)
- 2. Hilbert systems (VAL forward chaining)
- 3. Tableaux systems ((un)-SAT backward chaining)
- 4. Correctness and completeness of Tableau
- 5. Examples
- 6. Termination
- 7. Countermodels

Hilbert style axiomatization

Axioms for propositional connectives (the same as in PL)

$$\begin{array}{lll} \mathbf{AI} & \varphi \supset (\psi \supset \varphi) \\ \mathbf{A2} & (\varphi \supset (\psi \supset \vartheta)) \supset ((\varphi \supset \psi) \supset (\varphi \supset \vartheta)) \\ \mathbf{A3} & (\neg \psi \supset \neg \varphi) \supset ((\neg \psi \supset \varphi) \supset \psi) \\ & \frac{\varphi \ \varphi \supset \psi}{\psi} \\ \mathbf{MP} & \overline{\psi} \end{array}$$

Axioms and rules for quantifiers

A4
$$\forall x.(\varphi(x)) \supset \varphi(t) \text{ if } t \text{ is free for } x \text{ in } \varphi(x)$$

A5 $\forall x.(\varphi \supset \psi) \supset (\varphi \supset \forall x.\psi)$ if x does not occur free in φ

Gen
$$\frac{\varphi}{\forall x. \varphi}$$

NOTE: Hilbert FOL is correct and complete with respect First order semantics

Mathematical Logics FOL: Reasoning as deduction

Fausto Giunchiglia and Mattia Fumagalli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli