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Exercise

Translation in PL of the following sentence:
If Davide comes to the party, then, if Carlo doesn’t come
then Angelo comes

Mapping:
I D = Davide comes to the party
I C = Carlo comes to the party
I A = Angelo comes to the party



Candidate Solutions

Two candidate formalizations:
I F1: D imp (not C imp A)
I F2: D imp (A imp not C)

Let us check whether they are equivalent. We can compute and
compare the truth tables, using:
http://datascientia.education/logictools/prop.html

http://datascientia.education/logictools/prop.html


Equivalent?

Truth Table 1
D imp (not C imp A)

D C A | D -> (-C -> A)
––––––––––––––––––––––
0 0 0 | 1 1 0
0 0 1 | 1 1 1
0 1 0 | 1 0 1
0 1 1 | 1 0 1
1 0 0 | 0 1 0
1 0 1 | 1 1 1
1 1 0 | 1 0 1
1 1 1 | 1 0 1

Truth Table 2
D imp (A imp not C)

D A C | D -> (A -> -C)
––––––––––––––––––––––
0 0 0 | 1 1 1
0 0 1 | 1 1 0
0 1 0 | 1 1 1
0 1 1 | 1 0 0
1 0 0 | 1 1 1
1 0 1 | 1 1 0
1 1 0 | 1 1 1
1 1 1 | 0 0 0



Equivalent? No

F1 and F2 differ in the following cases:

Row D A C F1 F2
--------------------
A. 1 0 0 0 1
B. 1 1 1 1 0

Let see what they mean:
A. Davide comes, Carlo does not, and Angelo does not. This
interpretation satisfies F2 (but not F1), but it is, however, “wrong”,
because “if Carlo does not come, then Angelo comes”; thus F2 does
not formalizes our world.
B. Davide comes to the party, Carlo comes to the party and so does
Angelo. This interpretation satisfies F1 (but not F2) and it is also
“correct” w.r.t. the world, since if Carlo comes, nothing is said
about what Angelo does.



Preliminary Remark

Peculiar case of the ⊗ expansion:

P1 ⊗ P2corresponds to:P1 ∨ P2 (1)



Exercise: Hilbert’s axiom

We use the notation supported by the Logic Tools on our website:

(p -> (q -> r)) -> ((p -> q) -> (p -> r))

Assume it is false:

- ( (p -> (q -> r)) -> ((p -> q) -> (p -> r)) )

http://datascientia.education/logictools/prop.html#syntax


Compute the CNF

CNF( -((p->(q->r))->((p->q)->(p->r))) )
CNF( p->(q->r) ) & CNF( -((p->q)->(p->r)) )
[ CNF(-p) ⊗ CNF(q->r) ] & [ CNF( (p->q) ) & CNF( -(p->r) ) ]

Since we have an &, we can split the decomposition.



First set of clauses

CNF(-p) ⊗ CNF(q->r) =
-p ⊗ [ CNF(-q) ⊗ CNF(r) ]
-p ⊗ [ -q ⊗ r ]
-p ⊗ [ -q | r ]
-p | [ -q | r ]
-p | -q | r



Second set of clauses

CNF( (p->q) )
CNF( -p ) ⊗ CNF( q ) [next time, we’ll omit this step!]
-p | q



Third set of clauses

CNF( -(p->r) )
CNF(p) & CNF(-r)
p & -r



Back together

We can now put all the conjunctions back together:

(-p | -q | r) & (-p | q) & p & -r



Did we do it right?

We check whether the the formula and (our attempt at building)
its CNF are satisfied by the same interpretations:

p q r | -((p -> (q -> r)) -> ((p -> q) -> (p -> r)))
––––––––––––––––––––––––––––––––––––––––––––––––––––
0 0 0 | 0 1 1 1 1 1 1
0 0 1 | 0 1 1 1 1 1 1
0 1 0 | 0 1 0 1 1 1 1
0 1 1 | 0 1 1 1 1 1 1
1 0 0 | 0 1 1 1 0 1 0
1 0 1 | 0 1 1 1 0 1 1
1 1 0 | 0 0 0 1 1 0 0
1 1 1 | 0 1 1 1 1 1 1



We did it right indeed!

p q r | ((((-p V -q) V r) & (-p V q)) & p) & -r
–––––––––––––––––––––––––––––––––––––––––––––––
0 0 0 | 1 1 1 1 1 1 1 0 0 1
0 0 1 | 1 1 1 1 1 1 1 0 0 0
0 1 0 | 1 1 0 1 1 1 1 0 0 1
0 1 1 | 1 1 0 1 1 1 1 0 0 0
1 0 0 | 0 1 1 1 0 0 0 0 0 1
1 0 1 | 0 1 1 1 0 0 0 0 0 0
1 1 0 | 0 0 0 0 0 0 1 0 0 1
1 1 1 | 0 0 0 1 1 0 1 1 0 0
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