## Mathematical Logics First Order Logic\*

#### Fausto Giunchiglia and Mattia Fumagalli

University of Trento



\*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

# 1 Lecture index

- I. Intuition
- 2. Language
- 3. Interpretation function
- 4. Satisfiability with respect to an assignment
- 5. Satisfiability, Validity, Unsatisfiability, Logical Conseguence and Logical Equivalence
- 6. Exercizes
- 7. Finite domains
- 8. Analogy with data bases

### Free variables

#### Intuition

A free occurrence of a variable x is an occurrence of x which is not bounded by a (universal or existential) quantifier.

## Definition (Free occurrence)

- any occurrence of x in  $t_k$  is free in  $P(t_1, \ldots, t_k, \ldots, t_n)$
- any free occurrence of x in  $\varphi$  or in  $\psi$  is also fee in  $\varphi \wedge \psi$ ,  $\psi \vee \varphi$ ,  $\psi \supset \varphi$ , and  $\neg \varphi$
- any free occurrence of x in  $\varphi$ , is free in  $\forall y.\varphi$  and  $\exists y.\varphi$  if y is distinct from x.

### Definition (Ground/Closed Formula)

A formula  $\varphi$  is ground if it does not contain any variable. A formula is closed if it does not contain free occurrences of variables.

## Free variables

A variable x is free in  $\varphi$  (denote by  $\varphi(x)$ ) if there is at least a free occurrence of x in  $\varphi$ .

#### Intuitively..

Free variables represents individuals which must be instantiated to make the formula a meaningful proposition.

- Friends(Bob, y)y free
- $\forall y . Friends(Bob, y)$  no free variables
- $\exists x . (Sum(x, 3) = 12)$  no free variables
- $\exists x . (Sum(x,y) = 12)$  y free

*NOTE*: x is free in  $P(x) \supset \forall x.Q(x)$  (the occurrence of x in red is free, the one in green is not free.

## Free variable and free terms

## Definition (Term free for a variable)

A term t is free for a variable x in formula  $\varphi$ , if and only if all the occurrences of x in  $\varphi$  do not occur within the scope of a quantifier of some variable occurring in t.

## Example

The term x is free for y in  $\exists z.hates$  (y, z). We can safely replace y with x obtaining  $\exists z.hates$  (x, z) without changing the meaning of the formula.

However, the term z is not free for y in  $\exists z.hates$  (y, z). In fact y occurs within the scope of a quantifier of z. Thus, we cannot substitute z for y in this sentence without changing the meaning of the sentence as we obtain  $\exists z.hates$  (z, z).

## Free variables and free terms - example

An occurrence of a variable x can be safely instantiated by a term free for x in a formula  $\varphi$ ,

If you replace x with a terms which is not free for x in  $\varphi$ , you can have unexpected effects:

E.g., replacing x with mother-of(y) in the formula  $\exists y.friends(x, y)$  you obtain the formula

 $\exists y. friends(mother-of(y), y)$ 

# Satisfiability and Validity

#### Definition (Model, satisfiability and validity)

An interpretation I is a model of  $\varphi$  under the assignment a, if

$$I \vDash \varphi[a]$$

A formula  $\varphi$  is satisfiable if there is some I and some assignment a such that  $I \models \varphi[a]$ .

A formula  $\varphi$  is unsatisfiable if it is not satisfiable.

A formula  $\varphi$  is valid if every I and every assignment  $a \mid I \models \varphi[a]$ 

#### Definition (Logical Consequence)

A formula  $\varphi$  is a logical consequence of a set of formulas  $\Gamma$ , in symbols  $\Gamma \vDash \varphi$ , if for all interpretations I and for all assignments a

$$I \vDash \Gamma[a] \Rightarrow I \vDash \varphi[a]$$

where  $I \models \Gamma[a]$  means that I satisfies all the formulas in  $\Gamma$  under a.

Logical equivalence defined as (as usual as) bidirectional logical consequence

# FOL properties - Open and Closed Formulas

- Note that for closed formulas, satisfiability, validity and logical consequence / equivalence do not depend on the assignment of variables.
- For closed formulas, we therefore omit the assignment and write  $I \vDash \varphi$ .
- More in general  $I \models \varphi[a]$  if and only if  $I \models \varphi[a^l]$  when [a] and  $[a^l]$  coincide on the variables free in  $\varphi$  (they can differ on all the others). This equivalence with closed formulas holds for all assignments, independent of the assignments

## FOL Properties (same as PL)

## Proposition

A Valid  $\rightarrow$  A satisfiable  $\longleftrightarrow$  A not unsatisfiable

A unsatisfiable  $\longleftrightarrow$  A not satisfiable  $\longrightarrow$  A not Valid

 $\Gamma$ ,  $A \models B \longleftrightarrow \Gamma \models A \to B$ 

 $\Gamma \vDash \phi \ \longleftrightarrow \Gamma \cup \{\neg \phi\} \ \textit{not satisfiable}$ 

### Proposition

| if A is       | then ¬A is    |
|---------------|---------------|
| Valid         | Unsatisfiable |
| Satisfiable   | not Valid     |
| not Valid     | Satisfiable   |
| Unsatisfiable | Valid         |

## FOL Properties of quantifiers

#### Proposition

The following formulas are valid

- $\exists x \ (\varphi(x) \lor \psi(x)) \equiv \exists x \varphi(x) \lor \exists x \psi(x)$

- $\exists x \ \forall x \varphi(x) \equiv \forall x \varphi(x)$

#### **Proposition**

The following formulas are not valid

- $\exists x \ (\varphi(x) \land \psi(x)) \equiv \exists x \varphi(x) \land \exists x \psi(x)$

## Mathematical Logics First Order Logic\*

#### Fausto Giunchiglia and Mattia Fumagalli

University of Trento



\*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli