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Free variables

Intuition

A free occurrence of a variable x is an occurrence of x which is not  

bounded by a (universal or existential) quantifier.

Definition (Free occurrence)

any occurrence of x in tk is free in P (t1, . . . , tk, . . . , tn)

any free occurrence of x in φ or in ψ is also fee in φ ∧ ψ,  

ψ ∨ φ,  ψ ⊃ φ,  and ¬φ

any free occurrence of x in φ, is free in ∀y.φ and ∃y.φ if y is  

distinct from x .

Definition (Ground/Closed Formula)

A formula φ is ground if it does not contain any variable. A  formula 

is closed if it does not contain free occurrences of variables.
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Free variables

A variable x is free in φ (denote by φ(x)) if there is at least a free  

occurrence of x in φ.
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Intuitively..

Free variables represents individuals which must be instantiated to  make 

the formula a meaningful proposition.

Friends(Bob,y) y free

∀y . Friends(Bob,y) no free variables

Sum(x, 3) =12 x free

∃x . (Sum(x, 3) =12) no free variables

∃x . (Sum(x,y) = 12) y free

NOTE: x is free in P (x) ⊃ ∀x.Q(x) (the occurrence of x in red is free,

the one in green is not free.



Free variable and free terms

Definition (Term free for a  variable)

A term t is free for a variable x in formula φ, if and only if all the  

occurrences of x in φ do not occur within the scope of a quantifier  

of some variable occurring in t.

Example

The term x is free for y in ∃z.hates (y, z). We can safely replace y  

with x obtaining ∃z.hates (x, z) without changing the meaning of  the 

formula.

However, the term z is not free for y in ∃z.hates (y, z). In fact y  

occurs within the scope of a quantifier of z . Thus, we cannot  

substitute z for y in this sentence without changing the meaning  

of the sentence as we obtain ∃z.hates (z, z).
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Free variables and free terms - example

An occurrence of a variable x can be safely instantiated by a term  

free for x  in a formula φ,

If you replace x with a terms which is not free for x in φ, you can  

have unexpected effects:

E.g., replacing x with mother-of(y) in the formula ∃y.friends(x, y)  you 

obtain the formula

∃y.friends(mother-of(y), y)
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Satisfiability and Validity

Definition (Model, satisfiability and validity)

An interpretation I is a model of φ under the assignment a, if

I ⊨ φ[a]

A formula φ is satisfiable if there is some I and some assignment a such that

I ⊨ φ[a].

A formula φ is unsatisfiable if it is not satisfiable.

A formula φ is valid if every I and every assignment a I ⊨ φ[a]

Definition (Logical Consequence)

A formula φ is a logical consequence of a set of formulas Γ, in symbols Γ ⊨ φ,  if 

for all interpretations I and for all assignments a

I ⊨ Γ[a] ⇒ I ⊨ φ[a]

where I ⊨ Γ[a] means that I satisfies all the formulas in Γ under a.
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FOL properties - Open and Closed Formulas

• Note that for closed formulas, satisfiability, validity and logical  

consequence / equivalence do not depend on the assignment 

of variables.

• For closed formulas, we therefore omit the assignment and  

write I ⊨ φ.

• More in general I ⊨ φ[a] if and only if I ⊨ φ[al] when [a] and 

[al] coincide on the variables free in φ (they can differ on all 

the others). This equivalence with closed formulas holds for all

assignments, independent of the assignments
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FOL Properties (same as PL)

Proposition

A Valid →A satisfiable ←→ A not unsatisfiable

A unsatisfiable ←→ A not satisfiable →A not Valid
Γ, A ⊨B ←→ Γ ⊨A → B

Γ ⊨ φ ←→ Γ ∪ {¬φ} not satisfiable
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Proposit ion

if A is then ¬ A is

Valid Unsatisfiable

Satisfiable not Valid

not Valid Satisfiable

Unsatisfiable Valid



FOL Properties of quantifiers

Proposition

The following formulas are  valid

∀x (φ(x) ∧ ψ(x)) ≡ ∀xφ(x) ∧ ∀xψ(x)

∃x (φ(x) ∨ ψ(x)) ≡ ∃xφ(x) ∨ ∃xψ(x)

∀xφ(x) ≡ ¬∃x ¬φ(x)

∀x ∃xφ(x) ≡ ∃xφ(x)

∃x ∀xφ(x) ≡ ∀xφ(x)

Proposition

The following formulas are  not valid

∀x (φ(x) ∨ ψ(x)) ≡ ∀xφ(x) ∨ ∀xψ(x)

∃x (φ(x) ∧ ψ(x )) ≡ ∃xφ(x ) ∧ ∃xψ(x)

∀xφ(x ) ≡ ∃xφ(x)

∀x ∃yφ(x, y) ≡ ∃y ∀xφ(x, y)
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