Mathematical Logics First Order Logic*

Fausto Giunchiglia and Mattia Fumagalli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

1 Lecture index

- I. Intuition
- 2. Language
- 3. Interpretation function
- 4. Satisfiability with respect to an assignment
- 5. Satisfiability, Validity, Unsatisfiability, Logical Conseguence and Logical Equivalence
- 6. Exercizes
- 7. Finite domains
- 8. Analogy with data bases

Definition (Assignment)

An assignment a is a function from the set of variables to the domain of interpretation Δ .

a[x/d] denotes the assignment that coincides with a on all the variables but x, which is associated to d.

Example

Constants = {a,b,c}

$$\Delta = \{0,2,3\}$$
 with $I(a)=0$, $I(b)=2$, $I(c)=3$

If formula is

- B(x) then we have assignments a I = [0], a 2=[2], a 3=[3]
- A(x1,x2) then we have assignments a1 = [0,0], a2 = [0,2], ..., a8 = [3,3]
- $A(x1,x2) \land B(x1)$ then we have assignments ...

Definition (Interpretation of terms)

The interpretation of a term t w.r.t. the assignment a, in symbols I(t)[a] is recursively defined as follows:

$$\begin{aligned} I(x_i)[a] &= a(x_i) \\ I(c_i)[a] &= I(c_i) \\ I(f(t_1, ..., t_n))[a] &= I(f)(I(t_1)[a], ..., I(t_n)[a]) \end{aligned}$$

Definition (Satisfiability of a formula w.r.t. an assignment)

An interpretation I satisfies a formula φ w.r.t. the assignment *a* according to the following rules:

$l \models t_1 = t_2[a]$	iff	$I(t_1)[a] = I(t_2)[a]$
$I \models P(t_1, \ldots, t_n)[a]$	iff	$\langle I(t_1)[a], \ldots, I(t_n)[a] \rangle \in I(P)$
$l \vDash \varphi \land \psi[a]$	iff	$l \vDash \varphi[a]$ and $l \vDash \psi[a]$
$l \vDash \varphi \lor \psi[a]$	iff	$l \vDash \varphi[a] \text{ or } l \vDash \psi[a]$
$I\vDash \varphi \supset \psi[a]$	iff	$l \nvDash \varphi[a] \text{ or } l \vDash \psi[a]$
$l \vDash \neg \varphi[a]$	iff	$I \nvDash \varphi[a]$
$l\vDash \varphi \equiv \psi[a]$	iff	$I \models \varphi[a] \text{ iff } I \models \psi[a]$
$l \vDash \exists x \varphi[a]$	iff	there is a $d \in \Delta$ such that $l \models \varphi[a[x/d]]$
$I \models \forall x \varphi[a]$	iff	for all $d \in \Delta$, $l \models \varphi[a[x/d]]$

Example (Of interpretation) **Symbols** Constants: alice, bob, carol, robert Function: *mother-of* (with arity equal to 1) Predicate: *friends* (with arity equal to 2) Domain $\Delta = \{1, 2, 3, 4, ...\}$ Interpretation l(alice) = 1, l(bob) = 2, l(carol) = 3,l(robert) = 2M(1) = 3 $I(mother-of) = M \qquad \begin{array}{c} M(2) = I \\ M(3) = 4 \end{array}$ $M(n) = n + 1 \text{ for } n \ge 4$ $I(friends) = F = -\begin{bmatrix} (1,2), (2,1), (3,4), \\ (4,3), (4,2), (2,4), \\ (4,1), (1,4), (4,4) \end{bmatrix}$

Example (cont'd from example above)

Exercise

Check the following statements, considering the interpretation I above:

- I \models Alice = Bob[a]
- $I \models Robert = Bob[a]$
- $I \models x = Bob[a[x/2]]$
- l(mother-of(alice))[a] = 3l(mother-of(x))[a[x/4]] = 5

$$I(friends(x, y)) = \begin{bmatrix} x := & y := \\ 1 & 2 \\ 2 & 1 \\ 4 & 1 \\ 1 & 4 \\ 4 & 2 \\ 2 & 4 \\ 4 & 3 \\ 3 & 4 \\ 4 & 4 \end{bmatrix}$$

I(friends(x, x)) =

x :=
4

$(((x, y))) \land (x - y) =$

<i>x</i> :=	<i>y</i> :=
4	4

y := 4

 $I(\forall x friends(x, y)) =$

 $I(\exists x friends(x, y)) =$

NOTE: each line in a table is an assignment satisfying the formula

Mathematical Logics First Order Logic*

Fausto Giunchiglia and Mattia Fumagalli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli